Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041203

RESUMEN

BACKGROUND AND AIMS: The distinct functions of immune cells in atherosclerosis have been mostly defined by preclinical mouse studies. Contrastingly, the immune cell composition of human atherosclerotic plaques and their contribution to disease progression is only poorly understood. It remains uncertain whether genetic animal models allow for valuable translational approaches. METHODS AND RESULTS: Single cell RNA-sequencing (scRNA-seq) was performed to define the immune cell landscape in human carotid atherosclerotic plaques. The human immune cell repertoire demonstrated an unexpectedly high heterogeneity and was dominated by cells of the T-cell lineage, a finding confirmed by immunohistochemistry. Bioinformatical integration with 7 mouse scRNA-seq data sets from adventitial and atherosclerotic vascular tissue revealed a total of 51 identities of cell types and differentiation states, of which some were only poorly conserved between species and exclusively found in humans. Locations, frequencies, and transcriptional programs of immune cells in mouse models did not resemble the immune cell landscape in human carotid atherosclerosis. In contrast to standard mouse models of atherosclerosis, human plaque leukocytes were dominated by several T-cell phenotypes with transcriptional hallmarks of T-cell activation and memory formation, T-cell receptor-, and pro-inflammatory signaling. Only mice at the age of 22 months partially resembled the activated T-cell phenotype. In a validation cohort of 43 patients undergoing carotid endarterectomy, the abundance of activated immune cell subsets in the plaque defined by multi-color flow cytometry associated with the extend of clinical atherosclerosis. CONCLUSIONS: Integrative scRNA-seq reveals a substantial difference in the immune cell composition of murine and human carotid atherosclerosis - a finding that questions the translational value of standard mouse models for adaptive immune cell studies. Clinical associations suggest a specific role for T-cell driven (auto-) immunity in human plaque formation and -instability.

2.
Biomed Res Int ; 2022: 6889278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203484

RESUMEN

Background: Mitochondria fuse to form elongated networks which are more tolerable to stress and injury. Ischemic pre- and postconditioning (IPC and IPost, respectively) are established cardioprotective strategies in the preclinical setting. Whether IPC and IPost modulates mitochondrial morphology is unknown. We hypothesize that the protective effects of IPC and IPost may be conferred via preservation of mitochondrial network. Methods: IPC and IPost were applied to the H9c2 rat myoblast cells, isolated adult primary murine cardiomyocytes, and the Langendorff-isolated perfused rat hearts. The effects of IPC and IPost on cardiac cell death following ischemia-reperfusion injury (IRI), mitochondrial morphology, and gene expression of mitochondrial-shaping proteins were investigated. Results: IPC and IPost successfully reduced cardiac cell death and myocardial infarct size. IPC and IPost maintained the mitochondrial network in both H9c2 and isolated adult primary murine cardiomyocytes. 2D-length measurement of the 3 mitochondrial subpopulations showed that IPC and IPost significantly increased the length of interfibrillar mitochondria (IFM). Gene expression of the pro-fusion protein, Mfn1, was significantly increased by IPC, while the pro-fission protein, Drp1, was significantly reduced by IPost in the H9c2 cells. In the primary cardiomyocytes, gene expression of both Mfn1 and Mfn2 were significantly upregulated by IPC and IPost, while Drp1 was significantly downregulated by IPost. In the Langendorff-isolated perfused heart, gene expression of Drp1 was significantly downregulated by both IPC and IPost. Conclusion: IPC and IPost-mediated upregulation of pro-fusion proteins (Mfn1 and Mfn2) and downregulation of pro-fission (Drp1) promote maintenance of the interconnected mitochondrial network, ultimately conferring cardioprotection against IRI.


Asunto(s)
Poscondicionamiento Isquémico , Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Ratones , Mitocondrias/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Ratas
3.
J Lipid Atheroscler ; 11(2): 161-177, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35656151

RESUMEN

Objective: Impaired cardiac efficiency is a hallmark of diabetic cardiomyopathy in models of type 2 diabetes. Adiponectin receptor 1 (AdipoR1) deficiency impairs cardiac efficiency in non-diabetic mice, suggesting that hypoadiponectinemia in type 2 diabetes may contribute to impaired cardiac efficiency due to compromised AdipoR1 signaling. Thus, we investigated whether targeting cardiac adiponectin receptors may improve cardiac function and energetics, and attenuate diabetic cardiomyopathy in type 2 diabetic mice. Methods: A non-selective adiponectin receptor agonist, AdipoRon, and vehicle were injected intraperitoneally into Eight-week-old db/db or C57BLKS/J mice for 10 days. Cardiac morphology and function were evaluated by echocardiography and working heart perfusions. Results: Based on echocardiography, AdipoRon treatment did not alter ejection fraction, left ventricular diameters or left ventricular wall thickness in db/db mice compared to vehicle-treated mice. In isolated working hearts, an impairment in cardiac output and efficiency in db/db mice was not improved by AdipoRon. Mitochondrial respiratory capacity, respiration in the presence of oligomycin, and 4-hydroxynonenal levels were similar among all groups. However, AdipoRon induced a marked shift in the substrate oxidation pattern in db/db mice towards increased reliance on glucose utilization. In parallel, the diabetes-associated increase in serum triglyceride levels in vehicle-treated db/db mice was blunted by AdipoRon treatment, while an increase in myocardial triglycerides in vehicle-treated db/db mice was not altered by AdipoRon treatment. Conclusion: AdipoRon treatment shifts myocardial substrate preference towards increased glucose utilization, likely by decreasing fatty acid delivery to the heart, but was not sufficient to improve cardiac output and efficiency in db/db mice.

4.
Circulation ; 142(13): 1279-1293, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32703007

RESUMEN

BACKGROUND: Throughout the inflammatory response that accompanies atherosclerosis, autoreactive CD4+ T-helper cells accumulate in the atherosclerotic plaque. Apolipoprotein B100 (apoB), the core protein of low-density lipoprotein, is an autoantigen that drives the generation of pathogenic T-helper type 1 (TH1) cells with proinflammatory cytokine secretion. Clinical data suggest the existence of apoB-specific CD4+ T cells with an atheroprotective, regulatory T cell (Treg) phenotype in healthy individuals. Yet, the function of apoB-reactive Tregs and their relationship with pathogenic TH1 cells remain unknown. METHODS: To interrogate the function of autoreactive CD4+ T cells in atherosclerosis, we used a novel tetramer of major histocompatibility complex II to track T cells reactive to the mouse self-peptide apo B978-993 (apoB+) at the single-cell level. RESULTS: We found that apoB+ T cells build an oligoclonal population in lymph nodes of healthy mice that exhibit a Treg-like transcriptome, although only 21% of all apoB+ T cells expressed the Treg transcription factor FoxP3 (Forkhead Box P3) protein as detected by flow cytometry. In single-cell RNA sequencing, apoB+ T cells formed several clusters with mixed TH signatures that suggested overlapping multilineage phenotypes with pro- and anti-inflammatory transcripts of TH1, T helper cell type 2 (TH2), and T helper cell type 17 (TH17), and of follicular-helper T cells. ApoB+ T cells were increased in mice and humans with atherosclerosis and progressively converted into pathogenic TH1/TH17-like cells with proinflammatory properties and only a residual Treg transcriptome. Plaque T cells that expanded during progression of atherosclerosis consistently showed a mixed TH1/TH17 phenotype in single-cell RNA sequencing. In addition, we observed a loss of FoxP3 in a fraction of apoB+ Tregs in lineage tracing of hyperlipidemic Apoe-/- mice. In adoptive transfer experiments, converting apoB+ Tregs failed to protect from atherosclerosis. CONCLUSIONS: Our results demonstrate an unexpected mixed phenotype of apoB-reactive autoimmune T cells in atherosclerosis and suggest an initially protective autoimmune response against apoB with a progressive derangement in clinical disease. These findings identify apoB autoreactive Tregs as a novel cellular target in atherosclerosis.


Asunto(s)
Apolipoproteína B-100/inmunología , Aterosclerosis/inmunología , Autoinmunidad , Linfocitos T Reguladores/inmunología , Animales , Apolipoproteína B-100/genética , Aterosclerosis/genética , Ratones , Ratones Noqueados para ApoE , Linfocitos T Reguladores/patología
5.
Stem Cell Reports ; 12(3): 597-610, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30799273

RESUMEN

The relationship between diabetes and endothelial dysfunction remains unclear, particularly the association with pathological activation of calpain, an intracellular cysteine protease. Here, we used human induced pluripotent stem cells-derived endothelial cells (iPSC-ECs) to investigate the effects of diabetes on vascular health. Our results indicate that iPSC-ECs exposed to hyperglycemia had impaired autophagy, increased mitochondria fragmentation, and was associated with increased calpain activity. In addition, hyperglycemic iPSC-ECs had increased susceptibility to cell death when subjected to a secondary insult-simulated ischemia-reperfusion injury (sIRI). Importantly, calpain inhibition restored autophagy and reduced mitochondrial fragmentation, concurrent with maintenance of ATP production, normalized reactive oxygen species levels and reduced susceptibility to sIRI. Using a human iPSC model of diabetic endotheliopathy, we demonstrated that restoration of autophagy and prevention of mitochondrial fragmentation via calpain inhibition improves vascular integrity. Our human iPSC-EC model thus represents a valuable platform to explore biological mechanisms and new treatments for diabetes-induced endothelial dysfunction.


Asunto(s)
Autofagia/efectos de los fármacos , Calpaína/antagonistas & inhibidores , Complicaciones de la Diabetes/tratamiento farmacológico , Glicoproteínas/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Enfermedades Vasculares/tratamiento farmacológico , Células Cultivadas , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedades Vasculares/metabolismo
6.
Front Cardiovasc Med ; 4: 40, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28676852

RESUMEN

CD40L (CD154), a member of the tumor necrosis factor superfamily, is a co-stimulatory molecule that was first discovered on activated T cells. Beyond its fundamental role in adaptive immunity-ligation of CD40L to its receptor CD40 is a prerequisite for B cell activation and antibody production-evidence from more than two decades has expanded our understanding of CD40L as a powerful modulator of inflammatory pathways. Although inhibition of CD40L with neutralizing antibodies has induced life-threatening side effects in clinical trials, the discovery of cell-specific effects and novel receptors with distinct functional consequences has opened a new path for therapies that specifically target detrimental properties of CD40L. Here, we carefully evaluate the signaling network of CD40L by gene enrichment analysis and its cell-specific expression, and thoroughly discuss its role in cardiovascular pathologies with a specific emphasis on atherosclerotic and thrombotic disease.

7.
Basic Res Cardiol ; 111(4): 44, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27240856

RESUMEN

Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased the levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease.


Asunto(s)
Ceniza del Carbón/toxicidad , Macrófagos Alveolares/metabolismo , Infarto del Miocardio/patología , Material Particulado/toxicidad , Animales , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Citometría de Flujo , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/inmunología
8.
Arterioscler Thromb Vasc Biol ; 36(8): 1577-86, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27339459

RESUMEN

OBJECTIVE: A solid body of evidence supports a role of extracellular ATP and its P2 receptors in innate and adaptive immunity. It promotes inflammation as a danger signal in various chronic inflammatory diseases. Thus, we hypothesize contribution of extracellular ATP and its receptor P2Y2 in vascular inflammation and atherosclerosis. APPROACH AND RESULTS: Extracellular ATP induced leukocyte rolling, adhesion, and migration in vivo as assessed by intravital microscopy and in sterile peritonitis. To test the role of extracellular ATP in atherosclerosis, ATP or saline as control was injected intraperitoneally 3× a week in low-density lipoprotein receptor(-/-) mice consuming high cholesterol diet. Atherosclerosis significantly increased after 16 weeks in ATP-treated mice (n=13; control group, 0.26 mm2; ATP group, 0.33 mm2; P=0.01). To gain into the role of ATP-receptor P2Y2 in ATP-induced leukocyte recruitment, ATP was administered systemically in P2Y2-deficient or P2Y2-competent mice. In P2Y2-deficient mice, the ATP-induced leukocyte adhesion was significantly reduced as assessed by intravital microscopy. P2Y2 expression in atherosclerosis was measured by real-time polymerase chain reaction and immunohistochemistry and demonstrates an increased expression mainly caused by influx of P2Y2-expressing macrophages. To investigate the functional role of P2Y2 in atherogenesis, P2Y2-deficient low-density lipoprotein receptor(-/-) mice consumed high cholesterol diet. After 16 weeks, P2Y2-deficient mice showed significantly reduced atherosclerotic lesions with decreased macrophages compared with P2Y2-competent mice (n=11; aortic arch: control group, 0.25 mm(2); P2Y2-deficient, 0.14 mm2; P=0.04). Mechanistically, atherosclerotic lesions from P2Y2-deficient mice expressed less vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 RNA. CONCLUSIONS: We show that extracellular ATP induces vascular inflammation and atherosclerosis via activation of P2Y2.


Asunto(s)
Adenosina Trifosfato/toxicidad , Aorta/efectos de los fármacos , Enfermedades de la Aorta/inducido químicamente , Aterosclerosis/inducido químicamente , Inflamación/inducido químicamente , Receptores Purinérgicos P2Y2/efectos de los fármacos , Adenosina Trifosfato/administración & dosificación , Adenosina Trifosfato/sangre , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Genotipo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Inyecciones Intraperitoneales , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Rodamiento de Leucocito/efectos de los fármacos , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Peritonitis/genética , Peritonitis/metabolismo , Fenotipo , Placa Aterosclerótica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Receptores Purinérgicos P2Y2/deficiencia , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Transducción de Señal/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 34(10): 2237-45, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25104800

RESUMEN

OBJECTIVE: Nucleotides such as ATP, ADP, UTP, and UDP serve as proinflammatory danger signals via purinergic receptors on their release to the extracellular space by activated or dying cells. UDP binds to the purinergic receptor Y6 (P2Y6) and propagates vascular inflammation by inducing the expression of chemokines such as monocyte chemoattractant protein 1, interleukin-8, or its mouse homologsCCL1 (chemokine [C-C motif] ligand 1)/keratinocyte chemokine, CXCL2 (chemokine [C-X-C motif] ligand 2)/macrophage inflammatory protein 2, and CXCL5 (chemokine [C-X-C motif] ligand 5)/LIX, and adhesion molecules such as vascular cell adhesion molecule 1 and intercellular cell adhesion molecule 1. Thus, P2Y6 contributes to leukocyte recruitment and inflammation in conditions such as allergic asthma or sepsis. Because atherosclerosis is a chronic inflammatory disease driven by leukocyte recruitment to the vessel wall, we hypothesized a role of P2Y6 in atherogenesis. APPROACH AND RESULTS: Intraperitoneal stimulation of wild-type mice with UDP induced rolling and adhesion of leukocytes to the vessel wall as assessed by intravital microscopy. This effect was not present in P2Y6-deficient mice. Atherosclerotic aortas of low-density lipoprotein receptor-deficient mice consuming high-cholesterol diet for 16 weeks expressed significantly more transcripts and protein of P2Y6 than respective controls. Finally, P2Y6 (-/-)/low-density lipoprotein receptor-deficient mice consuming high-cholesterol diet for 16 weeks developed significantly smaller atherosclerotic lesions compared with P2Y6 (+/+)/low-density lipoprotein receptor-deficient mice. Bone marrow transplantation identified a crucial role of P2Y6 on vascular resident cells, most likely endothelial cells, on leukocyte recruitment and atherogenesis. Atherosclerotic lesions of P2Y6-deficient mice contained fewer macrophages and fewer lipids as determined by immunohistochemistry. Mechanistically, RNA expression of vascular cell adhesion molecule 1 and interleukin-6 was decreased in these lesions and P2Y6-deficient macrophages took up less modified low-density lipoprotein cholesterol. CONCLUSIONS: We show for the first time that P2Y6 deficiency limits atherosclerosis and plaque inflammation in mice.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Inflamación/prevención & control , Receptores Purinérgicos P2/deficiencia , Animales , Aorta/inmunología , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/inmunología , Enfermedades de la Aorta/metabolismo , Aterosclerosis/genética , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Trasplante de Médula Ósea , Colesterol en la Dieta , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Rodamiento de Leucocito , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Placa Aterosclerótica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Receptores Purinérgicos P2/genética , Transducción de Señal , Factores de Tiempo , Migración Transendotelial y Transepitelial , Uridina Difosfato/metabolismo
10.
Circulation ; 129(23): 2414-25, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24664276

RESUMEN

BACKGROUND: Costimulatory cascades such as the CD40L-CD40 dyad enhance immune cell activation and inflammation during atherosclerosis. Here, we tested the hypothesis that CD40 directly modulates traits of the metabolic syndrome in diet-induced obesity in mice. METHODS AND RESULTS: To induce the metabolic syndrome, wild-type or CD40(-/-) mice consumed a high-fat diet for 20 weeks. Unexpectedly, CD40(-/-) mice exhibited increased weight gain, impaired insulin secretion, augmented accumulation of inflammatory cells in adipose tissue, and enhanced proinflammatory gene expression. This proinflammatory and adverse metabolic phenotype could be transplanted into wild-type mice by reconstitution with CD40-deficient lymphocytes, indicating a major role for CD40 in T or B cells in this context. Conversely, therapeutic activation of CD40 signaling by the stimulating antibody FGK45 abolished further weight gain during the study, lowered glucose levels, improved insulin sensitivity, and suppressed adipose tissue inflammation. Mechanistically, CD40 activation decreased the expression of proinflammatory cytokines in T cells but not in B cells or macrophages. Finally, repopulation of lymphocyte-free Rag1(-/-) mice with CD40(-/-) T cells provoked dysmetabolism and inflammation, corroborating a protective role of CD40 on T cells in the metabolic syndrome. Finally, levels of soluble CD40 showed a positive association with obesity in humans, suggesting clinical relevance of our findings. CONCLUSIONS: We present the surprising finding that CD40 deficiency on T cells aggravates whereas activation of CD40 signaling improves adipose tissue inflammation and its metabolic complications. Therefore, positive modulation of the CD40 pathway might describe a novel therapeutic concept against cardiometabolic disease.


Asunto(s)
Tejido Adiposo/inmunología , Aterosclerosis/inmunología , Antígenos CD40/genética , Antígenos CD40/inmunología , Síndrome Metabólico/inmunología , Obesidad/inmunología , Adipocitos/inmunología , Adipocitos/metabolismo , Traslado Adoptivo , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Ligando de CD40/inmunología , Ligando de CD40/metabolismo , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Resistencia a la Insulina/genética , Resistencia a la Insulina/inmunología , Activación de Linfocitos/inmunología , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Transducción de Señal/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...