Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37477554

RESUMEN

Laser-driven x-ray backlighting can be used to image fast dynamic processes like the propagation of laser-driven shock waves in matter. We demonstrate and evaluate the feasibility of operating the JUNGFRAU detector designed by PSI, a direct detecting x-ray detector, in environments with extreme electromagnetic pulses. The electromagnetic pulse-protective housing is specifically designed for this detector and optimized for pump-probe experiments at the Petawatt High-Energy Laser for Heavy Ion EXperiments (PHELIX) facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH. The beryllium x-ray entrance window of the protective housing has a high x-ray transmission of 94% at 8 keV. Measurements have shown that the housing simultaneously provides a relative damping of the electromagnetic field on average higher than 1000 in the frequency range of 100 MHz to 5 GHz. The results demonstrate the feasibility of operating digital detectors in experiments where strong electromagnetic pulses are present.

3.
J Imaging ; 8(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36135392

RESUMEN

If ancient documents are too fragile to be opened, X-ray imaging can be used to recover the content non-destructively. As an extension to conventional attenuation imaging, dark-field imaging provides access to microscopic structural object information, which can be especially advantageous for materials with weak attenuation contrast, such as certain metal-free inks in paper. With cotton paper and different self-made inks based on authentic recipes, we produced test samples for attenuation and dark-field imaging at a metal-jet X-ray source. The resulting images show letters written in metal-free ink that were recovered via grating-based dark-field imaging. Without the need for synchrotron-like beam quality, these results set the ground for a mobile dark-field imaging setup that could be brought to a library for document scanning, avoiding long transport routes for valuable historic documents.

4.
J Synchrotron Radiat ; 29(Pt 3): 794-806, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511012

RESUMEN

The advent of hard X-ray free-electron lasers enables nanoscopic X-ray imaging with sub-picosecond temporal resolution. X-ray grating interferometry offers a phase-sensitive full-field imaging technique where the phase retrieval can be carried out from a single exposure alone. Thus, the method is attractive for imaging applications at X-ray free-electron lasers where intrinsic pulse-to-pulse fluctuations pose a major challenge. In this work, the single-exposure phase imaging capabilities of grating interferometry are characterized by an implementation at the I13-1 beamline of Diamond Light Source (Oxfordshire, UK). For comparison purposes, propagation-based phase contrast imaging was also performed at the same instrument. The characterization is carried out in terms of the quantitativeness and the contrast-to-noise ratio of the phase reconstructions as well as via the achievable spatial resolution. By using a statistical image reconstruction scheme, previous limitations of grating interferometry regarding the spatial resolution can be mitigated as well as the experimental applicability of the technique.

5.
J Imaging ; 7(9)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34564104

RESUMEN

X-ray backlighters allow the capture of sharp images of fast dynamic processes due to extremely short exposure times. Moiré imaging enables simultaneously measuring the absorption and differential phase-contrast (DPC) of these processes. Acquiring images with one single shot limits the X-ray photon flux, which can result in noisy images. Increasing the photon statistics by repeating the experiment to gain the same image is not possible if the investigated processes are dynamic and chaotic. Furthermore, to reconstruct the DPC and transmission image, an additional measurement captured in absence of the object is required. For these reference measurements, shot-to-shot fluctuations in X-ray spectra and a source position complicate the averaging of several reference images for noise reduction. Here, two approaches of processing multiple reference images in combination with one single object image are evaluated regarding the image quality. We found that with only five reference images, the contrast-to-noise ratio can be improved by approximately 13% in the DPC image. This promises improvements for short-exposure single-shot acquisitions of rapid processes, such as laser-produced plasma shock-waves in high-energy density experiments at backlighter X-ray sources such as the PHELIX high-power laser facility.

6.
Ther Adv Med Oncol ; 12: 1758835920957932, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32994806

RESUMEN

BACKGROUND: Mammography can identify calcifications up to 50-100 µm in size as a surrogate parameter for breast cancer or ductal carcinoma in situ (DCIS). Microcalcifications measuring <50 µm are also associated with breast cancer or DCIS and are frequently not detected on mammography, although they can be detected with dark-field imaging. This study examined whether additional breast examination using X-ray dark-field imaging can increase the detection rate of calcifications. Advances in knowledge: (1) evaluation of additional modality of breast imaging; (2) specific evaluation of breast calcifications.Implications for patient care: the addition of X-ray dark-field imaging to conventional mammography could detect additional calcifications. METHODS: Talbot-Lau X-ray phase-contrast imaging and X-ray dark-field imaging were used to acquire images of breast specimens. The radiation dosage with the technique is comparable with conventional mammography. Three X-ray gratings with periods of 5-10 µm between the X-ray tube and the flat-panel detector provide three different images in a single sequence: the conventional attenuation image, differential phase image, and dark-field image. The images were read by radiologists. Radiological findings were marked and examined pathologically. The results were described in a descriptive manner. RESULTS: A total of 81 breast specimens were investigated with the two methods; 199 significant structures were processed pathologically, consisting of 123 benign and 76 malignant lesions (DCIS or invasive breast cancer). X-ray dark-field imaging identified 15 additional histologically confirmed carcinoma lesions that were visible but not declared suspicious on digital mammography alone. Another four malignant lesions that were not visible on mammography were exclusively detected with X-ray dark-field imaging. CONCLUSIONS: Adding X-ray dark-field imaging to digital mammography increases the detection rate for breast cancer and DCIS associated lesions with micrometer-sized calcifications.The use of X-ray dark-field imaging may be able to provide more accurate and detailed radiological classification of suspicious breast lesions.Adding X-ray dark-field imaging to mammography may be able to increase the detection rate and improve preoperative planning in deciding between mastectomy or breast-conserving therapy, particularly in patients with invasive lobular breast cancer.

7.
Opt Express ; 28(4): 5248-5256, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121749

RESUMEN

The challenge of astronomical intensity interferometry is to detect the small photon-bunching signals of distant sources with a broad optical bandwidth. We have built a Hanbury Brown-Twiss-like laboratory intensity interferometer with a focus on a relatively broad bandwidth (1nm FWHM optical filter) and high photon rates (up to 10MHz) per channel compared to typical (non-astronomical) intensity interferometry applications. As a light source we use a green LED to simulate starlight. The LED has proven to be a compact high-power source of stochastic light with a special advantage of a small emission area, which favours spatial coherence. Using single-photon correlations, we detect a bunching signal in the second-order correlation function with a coherence time of <1ps and an amplitude of <4⋅10-4 and describe signal and background quantitatively for a 40 hours measurement. In this paper we show our setup, present the correlation measurements and compare them to theoretical expectations.

8.
Med Phys ; 47(4): 1813-1826, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31977070

RESUMEN

BACKGROUND: X-ray dark-field radiography could enhance mammography by providing more information on imaged tissue and microcalcifications. The dark field signal is a measure of small angle scattering and can thus provide additional information on the imaged materials. This information can be useful for material distinction of calcifications and the diagnosis of breast cancer by classifying benign and malign association of these calcifications. METHODS: For this study, institutional review board approval was obtained. We present the evaluation of images acquired with interferometric grating-based x-ray imaging of 323 microcalcifications (166 malign and 157 benign associated) in freshly dissected breast tissue and compare the results to the information extracted in follow-up pathological evaluation. The number of imaged calcifications is sufficiently higher than in similar previous studies. Fourteen calcification properties were extracted from the digital images and used as predictors in three different models common in discrimination analysis namely a simple threshold model, a naive Bayes model and a linear regression model, which classify the calcifications as associated with a benign or suspicious finding. Three of these fourteen predictors have been newly defined in this work and are independent from the tissue background surrounding the microcalcifications. Using these predictors no background correction is needed, as in previous works in this field. The new predictors are the length of the first and second principle component of the absorption and dark-field data, as well as the angle between the first principle component and the dark-field axis. We called these predictors data length, data width, and data orientation. RESULTS: In fourfold cross-validation malignancy of the imaged tissue was predicted. Models that take only classical absorption predictors into account reached a sensitivity of 53.3% at a specificity of 81.1%. For a combination of predictors that also include dark field information, a sensitivity of 63.2% and specificity of 80.8% were obtained. The included dark field information consisted of the newly introduced parameters, data orientation and data width. CONCLUSIONS: While remaining at a similar specificity, the sensitivity, with which a trained model was able to distinguish malign from benign associated calcifications, was increased by 10% on including dark-field information. This suggests grating-based x-ray imaging as a promising clinical imaging method in the field of mammography.


Asunto(s)
Enfermedades de la Mama/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Radiografía , Análisis Discriminante , Femenino , Humanos
9.
J Imaging ; 6(7)2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34460656

RESUMEN

For imaging events of extremely short duration, like shock waves or explosions, it is necessary to be able to image the object with a single-shot exposure. A suitable setup is given by a laser-induced X-ray source such as the one that can be found at GSI (Helmholtzzentrum für Schwerionenforschung GmbH) in Darmstadt (Society for Heavy Ion Research), Germany. There, it is possible to direct a pulse from the high-energy laser Petawatt High Energy Laser for Heavy Ion eXperiments (PHELIX) on a tungsten wire to generate a picosecond polychromatic X-ray pulse, called backlighter. For grating-based single-shot phase-contrast imaging of shock waves or exploding wires, it is important to know the weighted mean energy of the X-ray spectrum for choosing a suitable setup. In propagation-based phase-contrast imaging the knowledge of the weighted mean energy is necessary to be able to reconstruct quantitative phase images of unknown objects. Hence, we developed a method to evaluate the weighted mean energy of the X-ray backlighter spectrum using propagation-based phase-contrast images. In a first step wave-field simulations are performed to verify the results. Furthermore, our evaluation is cross-checked with monochromatic synchrotron measurements with known energy at Diamond Light Source (DLS, Didcot, UK) for proof of concepts.

10.
Sci Rep ; 9(1): 4199, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862865

RESUMEN

Compared to conventional attenuation x-ray radiographic imaging, the x-ray Talbot-Lau technique provides further information about the scattering and the refractive properties of the object in the beam path. Hence, this additional information should improve the diagnostic process concerning medical applications and non-destructive testing. Nevertheless, until now, due to grating fabrication process, Talbot-Lau imaging suffers from small grating sizes (70 mm diameter). This leads to long acquisition times for imaging large objects. Stitching the gratings is one solution. Another one consists of scanning Talbot-Lau setups. In this publication, we present a compact and very fast scanning setup which enables imaging of large samples. With this setup a maximal scanning velocity of 71.7 mm/s is possible. A resolution of 4.1 lines/mm can be achieved. No complex alignment procedures are necessary while the field of view comprises 17.5 × 150 cm2. An improved reconstruction algorithm concerning the scanning approach, which increases robustness with respect to mechanical instabilities, has been developed and is presented. The resolution of the setup in dependence of the scanning velocity is evaluated. The setup imaging qualities are demonstrated using a human knee ex-vivo as an example for a high absorbing human sample.

11.
Phys Med Biol ; 64(6): 065013, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30731447

RESUMEN

X-ray dark-field imaging is a promising technique for lung diagnosis. Due to the alveolar structure of lung tissue, a higher contrast is obtained by the dark-field image compared to the attenuation image. Animal studies indicate an enhancement regarding the detection of lung diseases in early stages. In this publication, we focus on the influence of different Talbot-Lau interferometer specifications while maintaining the x-ray source, sample magnification and detector system. By imaging the same porcine lung with three different grating sets, we analyze the contrast-to-noise ratio of the obtained dark-field images with respect to visibility and correlation length. We demonstrate that relatively large grating periods of the phase and of the analyzer grating are sufficient for high quality lung imaging at reasonable dose levels.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Interferometría/métodos , Pulmón/diagnóstico por imagen , Animales , Interferometría/instrumentación , Porcinos , Rayos X
12.
Phys Med Biol ; 63(18): 185010, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30117437

RESUMEN

Talbot-Lau x-ray imaging provides additionally to the conventional attenuation image, two further images: the differential phase-contrast image which is especially sensitive to differences in refractive properties and the dark-field image which is showing the x-ray scattering properties of the object. Thus, in the dark-field image sub-pixeled object information can be observed. As it has been shown in recent studies, this is of special interest for lung imaging. Changes in the alveoli structure, which are in the size of one detector pixel, can be seen in the dark-field images. A fast acquisition process is crucial to avoid motion artifacts due to heartbeat and breathing of the patient. Using moiré imaging the images can be acquired with a single-shot exposure. Nevertheless, the spatial resolution is reduced compared to the phase-stepping acquisition. We evaluate the results of both imaging techniques towards their feasibility in clinical routine. Furthermore, we analyse the influence of artificial linear object movement on the image quality, in order to simulate the heartbeat of a patient.


Asunto(s)
Interferometría/métodos , Pulmón/diagnóstico por imagen , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía/métodos , Animales , Interferometría/instrumentación , Movimiento , Radiografía/instrumentación , Porcinos , Rayos X
13.
Phys Med Biol ; 63(13): 135018, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968576

RESUMEN

Talbot-Lau x-ray imaging (TLXI) is an innovative and promising imaging technique providing information about the x-ray attenuation, scattering, and refraction features of objects. However, the method is susceptible to vibrations and system component imprecisions, which are inevitable in clinical and industrial practice. Those influences provoke grating displacements and hence errors in the acquired raw data, which cause moiré artifacts in the reconstructed images. We developed an enhanced reconstruction algorithm capable of compensating these errors by adjusting the grating positions and thus suppressing the occurrence of moiré artifacts. The algorithm has been developed with regard to a future application in medical practice. The capability of the algorithm is demonstrated on a medical data set of a human hand (post-mortem) acquired under clinical conditions using a pre-clinical TXLI prototype. It is shown that the algorithm reliably suppresses moiré artifacts, preserves image contrast, does not blur anatomical structures or prevent quantitative imaging, and is executable on low-dose data sets. In addition, the algorithm runs autonomously without the need of interaction or rework of the final results. In conclusion, the proposed reconstruction algorithm facilitates the use of TLXI in clinical practice and allows the exploitation of the method's full diagnostic potential in future medical applications.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Artefactos , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/normas
14.
Sci Rep ; 8(1): 2325, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396417

RESUMEN

X-ray grating-based phase-contrast imaging has raised interest regarding a variety of potential clinical applications, whereas the method is feasible using a medical x-ray tube. Yet, the transition towards a clinical setup remains challenging due to the requirement of mechanical robustness of the interferometer and high demands applying to medical equipment in clinical use. We demonstrate the successful implementation of a Talbot-Lau interferometer in an interventional c-arm setup. The consequence of vibrations induced by the rotating anode of the tube is discussed and the prototype is shown to provide a visibility of 21.4% at a tube voltage of 60 kV despite the vibrations. Regarding clinical application, the prototype is mainly set back due to the limited size of the field of view covering an area of 17 mm × 46 mm. A c-arm offers the possibility to change the optical axis according to the requirements of the medical examination. We provide a method to correct for artifacts that result from the angulation of the c-arm. Finally, the images of a series of measurements with the c-arm in different angulated positions are shown. Thereby, it is sufficient to perform a single reference measurement in parking position that is valid for the complete series despite angulation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Interferometría/instrumentación , Interferometría/métodos , Radiografía/instrumentación , Radiografía/métodos , Estudios de Factibilidad , Fantasmas de Imagen
15.
J Med Imaging (Bellingham) ; 4(3): 034005, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28894764

RESUMEN

Grating-based Talbot-Lau x-ray interferometry is a popular method for measuring absorption, phase shift, and small-angle scattering. The standard acquisition method for this modality is phase stepping, where the Talbot pattern is reconstructed from multiple images acquired at different grating positions. We review the implicit assumptions in phase-stepping reconstruction, and find that the assumptions of perfectly known grating positions and homoscedastic noise variance are violated in some scenarios. Additionally, we investigate a recently reported estimation bias in the visibility and dark-field signal. To adapt the phase-stepping reconstruction to these findings, we propose three improvements to the reconstruction. These improvements are (a) to use prior knowledge to compute more accurate grating positions to reduce moiré artifacts, (b) to utilize noise variance information to reduce dark-field and phase noise in high-visibility acquisitions, and (c) to perform correction of an estimation bias in the interferometer visibility, leading to more quantitative dark-field imaging in acquisitions with a low signal-to-noise ratio. We demonstrate the benefit of our methods on simulated data, as well as on images acquired with a Talbot-Lau interferometer.

16.
Med Phys ; 44(5): 1886-1898, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28276081

RESUMEN

PURPOSE: Grating-based Talbot-Lau interferometers are a popular choice for phase-contrast X-ray acquisitions. Here, an air reference scan has to be acquired prior to an object scan. This particularly complicates acquisition of large objects: large objects are tiled into multiple scans due to the small field of view of current gratings. However, phase reference drifts occurring between these scans may require to repeatedly move the object in and out of the X-ray beam to update the reference information. METHODS: We developed an image processing technique that completely removes the need for phase reference scans in tiled acquisitions. We estimate the reference from object scans using a tailored iterated robust regression, using a novel efficient optimizer. RESULTS: Our evaluation indicates that the estimated reference is not only close to the acquired reference but also improves the final image quality. We hypothesize that this is because we mitigate errors that are introduced when actually acquiring the reference phase. CONCLUSION: Phase-contrast imaging of larger objects may benefit from computational estimation of phase reference data due to reduced scanning complexity and improved image quality.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Interferometría , Cintigrafía , Humanos , Rayos X
17.
Opt Express ; 24(12): 13357-64, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410353

RESUMEN

The performance of a Talbot-Lau interferometer depends to a great extent on its visibility. This means, to obtain high quality phase-contrast and dark-field images a high visibility is mandatory. Several parameters influence the visibility of such a system, like for example the x-ray spectrum, the inter-grating distances or the parameters of the three gratings. In this multidimensional space, wave field simulations help to find the optimal combination of the grating specifications to construct a setup with a high visibility while retaining a fixed angular sensitivity. In this work we specifically analyzed the influence of the G1 grating duty cycle in simulations and experiments. We show that there is a lot of room for improvement by varying the duty cycle of the phase-shifting grating G1. As a result, by employing a third-integer duty cycle we can increase the visibility to up to 53 % in a laboratory setup with a polychromatic spectrum. The achieved visibility is more than two times higher compared to the result with a standard-type setup. This visibility gain allows a dose reduction by a factor of 5 preserving the same image quality.

18.
Med Phys ; 43(6): 2774-2779, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27277024

RESUMEN

PURPOSE: X-ray dark-field imaging promises information on the small angle scattering properties even of large samples. However, the dark-field image is correlated with the object's attenuation and phase-shift if a polychromatic x-ray spectrum is used. A method to remove part of these correlations is proposed. METHODS: The experimental setup for image acquisition was modeled in a wave-field simulation to quantify the dark-field signals originating solely from a material's attenuation and phase-shift. A calibration matrix was simulated for ICRU46 breast tissue. Using the simulated data, a dark-field image of a human mastectomy sample was corrected for the finger print of attenuation- and phase-image. RESULTS: Comparing the simulated, attenuation-based dark-field values to a phantom measurement, a good agreement was found. Applying the proposed method to mammographic dark-field data, a reduction of the dark-field background and anatomical noise was achieved. The contrast between microcalcifications and their surrounding background was increased. CONCLUSIONS: The authors show that the influence of and dispersion can be quantified by simulation and, thus, measured image data can be corrected. The simulation allows to determine the corresponding dark-field artifacts for a wide range of setup parameters, like tube-voltage and filtration. The application of the proposed method to mammographic dark-field data shows an increase in contrast compared to the original image, which might simplify a further image-based diagnosis.


Asunto(s)
Radiografía/métodos , Algoritmos , Artefactos , Mama/cirugía , Calcinosis/diagnóstico por imagen , Calibración , Simulación por Computador , Humanos , Modelos Teóricos , Fantasmas de Imagen , Fotones , Radiografía/instrumentación , Dispersión del Ángulo Pequeño , Rayos X
19.
Opt Express ; 22(19): 23276-89, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321796

RESUMEN

A simulation framework for coherent X-ray imaging, based on scalar diffraction theory, is presented. It contains a core C++ library and an additional Python interface. A workflow is presented to include contributions of inelastic scattering obtained with Monte-Carlo methods. X-ray Talbot-Lau interferometry is the primary focus of the framework. Simulations are in agreement with measurements obtained with such an interferometer. Especially, the dark-field signal of densely packed PMMA microspheres is predicted. A realistic modeling of the microsphere distribution, which is necessary for correct results, is presented. The framework can be used for both setup design and optimization but also to test and improve reconstruction methods.


Asunto(s)
Diagnóstico por Imagen/métodos , Interferometría/instrumentación , Difracción de Rayos X/instrumentación , Humanos , Rayos X
20.
Opt Express ; 22(20): 24507-15, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25322026

RESUMEN

The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...