Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(17): 9266-9278, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37560916

RESUMEN

The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13's single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers' high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.


Asunto(s)
SARS-CoV-2 , Humanos , COVID-19/virología , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Cadena Simple , Cinética , Nucleótidos , SARS-CoV-2/enzimología
2.
bioRxiv ; 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36238723

RESUMEN

The genome of SARS-CoV-2 encodes for a helicase called nsp13 that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds short DNA duplexes. Our data confirm that nsp13 uses the inchworm mechanism to move along the DNA in single-nucleotide steps, translocating at ~1000 nt/s or unwinding at ~100 bp/s. Nanopore tweezers' high spatio-temporal resolution enables observation of the fundamental physical steps taken by nsp13 even as it translocates at speeds in excess of 1000 nucleotides per second enabling detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. Our data reveals that ATPγS interferes with nsp13's action by affecting several different kinetic processes. The dominant mechanism of inhibition differs depending on the application of assisting force. These advances demonstrate that nanopore tweezers are a powerful method for studying viral helicase mechanism and inhibition.

3.
Biophys J ; 121(10): 1813-1822, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35450824

RESUMEN

Cytoskeletal filaments, such as microtubules and actin filaments, play important roles in the mechanical integrity of cells and the ability of cells to respond to their environment. Measuring the mechanical properties of cytoskeletal structures is crucial for gaining insight into intracellular mechanical stresses and their role in regulating cellular processes. One of the ways to characterize these mechanical properties is by measuring their persistence length, the average length over which filaments stay straight. There are several approaches in the literature for measuring filament deformations, such as Fourier analysis of images obtained using fluorescence microscopy. Here, we show how curvature distributions can be used as an alternative tool to quantify biofilament deformations, and investigate how the apparent stiffness of filaments depends on the resolution and noise of the imaging system. We present analytical calculations of the scaling curvature distributions as a function of filament discretization, and test our predictions by comparing Monte Carlo simulations with results from existing techniques. We also apply our approach to microtubules and actin filaments obtained from in vitro gliding assay experiments with high densities of nonfunctional motors, and calculate the persistence length of these filaments. The presented curvature analysis is significantly more accurate compared with existing approaches for small data sets, and can be readily applied to both in vitro and in vivo filament data through the use of the open-source codes we provide.


Asunto(s)
Citoesqueleto de Actina , Citoesqueleto , Citoesqueleto de Actina/química , Microscopía Fluorescente , Microtúbulos , Estrés Mecánico
4.
Elife ; 112022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147499

RESUMEN

Catch bonds are a form of mechanoregulation wherein protein-ligand interactions are strengthened by the application of dissociative tension. Currently, the best-characterized examples of catch bonds are between single protein-ligand pairs. The essential AAA (ATPase associated with diverse cellular activities) mechanoenzyme Mdn1 drives at least two separate steps in ribosome biogenesis, using its MIDAS domain to extract the ubiquitin-like (UBL) domain-containing proteins Rsa4 and Ytm1 from ribosomal precursors. However, it must subsequently release these assembly factors to reinitiate the enzymatic cycle. The mechanism underlying the switching of the MIDAS-UBL interaction between strongly and weakly bound states is unknown. Here, we use optical tweezers to investigate the force dependence of MIDAS-UBL binding. Parallel experiments with Rsa4 and Ytm1 show that forces up to ~4 pN, matching the magnitude of force produced by AAA proteins similar to Mdn1, enhance the MIDAS domain binding lifetime up to 10-fold, and higher forces accelerate dissociation. Together, our studies indicate that Mdn1's MIDAS domain can form catch bonds with more than one UBL substrate, and provide insights into how mechanoregulation may contribute to the Mdn1 enzymatic cycle during ribosome biogenesis.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Ribosomas/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina/genética , Sitios de Unión , Ligandos , Pinzas Ópticas , Biogénesis de Organelos , Unión Proteica , Dominios Proteicos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae , Imagen Individual de Molécula
5.
Cell Chem Biol ; 28(10): 1460-1473.e15, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34015309

RESUMEN

Cytoplasmic dyneins are AAA (ATPase associated with diverse cellular activities) motor proteins responsible for microtubule minus-end-directed intracellular transport. Dynein's unusually large size, four distinct nucleotide-binding sites, and conformational dynamics pose challenges for the design of potent and selective chemical inhibitors. Here we use structural approaches to develop a model for the inhibition of a well-characterized S. cerevisiae dynein construct by pyrazolo-pyrimidinone-based compounds. These data, along with functional assays of dynein motility and mutagenesis studies, suggest that the compounds inhibit dynein by engaging the regulatory ATPase sites in the AAA3 and AAA4 domains, and not by interacting with dynein's main catalytic site in the AAA1 domain. A double Walker B mutation of the AAA3 and AAA4 sites substantially reduces enzyme activity, suggesting that targeting these regulatory domains is sufficient to inhibit dynein. Our findings reveal how chemical inhibitors can be designed to disrupt allosteric communication across dynein's AAA domains.


Asunto(s)
Dineínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitios de Unión , Dominio Catalítico , Microscopía por Crioelectrón , Dineínas/química , Dineínas/genética , Humanos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Pirazoles/química , Pirazoles/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
6.
Biophys J ; 120(6): 1020-1030, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33340543

RESUMEN

The superfamily 1 helicase nonstructural protein 13 (nsp13) is required for SARS-CoV-2 replication. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the RNA substrate. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be activated >50-fold by piconewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, such as hepatitis C virus NS3, and instead draws stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.


Asunto(s)
ADN Viral/metabolismo , Metiltransferasas/metabolismo , ARN Helicasas/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/metabolismo , Adenosina Trifosfato/farmacología , Fenómenos Biomecánicos , Imagen Individual de Molécula
8.
bioRxiv ; 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32766580

RESUMEN

The superfamily-1 helicase non-structural protein 13 (nsp13) is required for SARS-CoV-2 replication, making it an important antiviral therapeutic target. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the dsRNA, suggesting a passive unwinding mechanism. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be potently activated by picoNewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, drawing stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.

9.
Curr Biol ; 30(18): 3664-3671.e4, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32735815

RESUMEN

Kinesin-14s are microtubule-based motor proteins that play important roles in mitotic spindle assembly [1]. Ncd-type kinesin-14s are a subset of kinesin-14 motors that exist as homodimers with an N-terminal microtubule-binding tail, a coiled-coil central stalk (central stalk), a neck, and two identical C-terminal motor domains. To date, no Ncd-type kinesin-14 has been found to naturally exhibit long-distance minus-end-directed processive motility on single microtubules as individual homodimers. Here, we show that GiKIN14a from Giardia intestinalis [2] is an unconventional Ncd-type kinesin-14 that uses its N-terminal microtubule-binding tail to achieve minus-end-directed processivity on single microtubules over micrometer distances as a homodimer. We further find that although truncation of the N-terminal tail greatly reduces GiKIN14a processivity, the resulting tailless construct GiKIN14a-Δtail is still a minimally processive motor and moves its center of mass via discrete 8-nm steps on the microtubule. In addition, full-length GiKIN14a has significantly higher stepping and ATP hydrolysis rates than does GiKIN14a-Δtail. Inserting a flexible polypeptide linker into the central stalk of full-length GiKIN14a nearly reduces its ATP hydrolysis rate to that of GiKIN14a-Δtail. Collectively, our results reveal that the N-terminal tail of GiKIN14a is a de facto dual regulator of motility and reinforce the notion of the central stalk as a key mechanical determinant of kinesin-14 motility [3].


Asunto(s)
Adenosina Trifosfato/metabolismo , Giardia/fisiología , Cinesinas/metabolismo , Microtúbulos/fisiología , Actividad Motora , Cinesinas/genética , Multimerización de Proteína
10.
Proc Natl Acad Sci U S A ; 117(31): 18459-18469, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32694211

RESUMEN

Mdn1 is an essential mechanoenzyme that uses the energy from ATP hydrolysis to physically reshape and remodel, and thus mature, the 60S subunit of the ribosome. This massive (>500 kDa) protein has an N-terminal AAA (ATPase associated with diverse cellular activities) ring, which, like dynein, has six ATPase sites. The AAA ring is followed by large (>2,000 aa) linking domains that include an ∼500-aa disordered (D/E-rich) region, and a C-terminal substrate-binding MIDAS domain. Recent models suggest that intramolecular docking of the MIDAS domain onto the AAA ring is required for Mdn1 to transmit force to its ribosomal substrates, but it is not currently understood what role the linking domains play, or why tethering the MIDAS domain to the AAA ring is required for protein function. Here, we use chemical probes, single-particle electron microscopy, and native mass spectrometry to study the AAA and MIDAS domains separately or in combination. We find that Mdn1 lacking the D/E-rich and MIDAS domains retains ATP and chemical probe binding activities. Free MIDAS domain can bind to the AAA ring of this construct in a stereo-specific bimolecular interaction, and, interestingly, this binding reduces ATPase activity. Whereas intramolecular MIDAS docking appears to require a treatment with a chemical inhibitor or preribosome binding, bimolecular MIDAS docking does not. Hence, tethering the MIDAS domain to the AAA ring serves to prevent, rather than promote, MIDAS docking in the absence of inducing signals.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Sitios de Unión , Dominios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Biophys J ; 117(2): 331-345, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31301807

RESUMEN

High-resolution tracking of gold nanoparticle-labeled proteins has emerged as a powerful technique for measuring the structural kinetics of processive enzymes and other biomacromolecules. These techniques use point spread function (PSF) fitting methods borrowed from single-molecule fluorescence imaging to determine molecular positions below the diffraction limit. However, compared to fluorescence, gold nanoparticle tracking experiments are performed at significantly higher frame rates and utilize much larger probes. In the current work, we use Brownian dynamics simulations of nanoparticle-labeled proteins to investigate the regimes in which the fundamental assumptions of PSF fitting hold and where they begin to break down. We find that because gold nanoparticles undergo tethered diffusion around their anchor point, PSF fitting cannot be extended to arbitrarily fast frame rates. Instead, camera exposure times that allow the nanoparticle to fully populate its stationary positional distribution achieve a spatial averaging that increases fitting precision. We furthermore find that changes in the rotational freedom of the tagged protein can lead to artifactual translations in the fitted particle position. Finally, we apply these lessons to dissect a standing controversy in the kinesin field over the structure of a dimer in the ATP waiting state. Combining new experiments with simulations, we determine that the rear kinesin head in the ATP waiting state is unbound but not displaced from its previous microtubule binding site and that apparent differences in separately published reports were simply due to differences in the gold nanoparticle attachment position. Our results highlight the importance of gold conjugation decisions and imaging parameters to high-resolution tracking results and will serve as a useful guide for the design of future gold nanoparticle tracking experiments.


Asunto(s)
Simulación por Computador , Oro/química , Cinesinas/química , Nanopartículas del Metal/química , Proteínas Motoras Moleculares/química , Coloración y Etiquetado , Adenosina Trifosfato/química , Animales , Sitios de Unión , Drosophila , Fotones , Rotación
12.
Biophys J ; 116(7): 1270-1281, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30902363

RESUMEN

Phragmoplast-associated kinesin-related protein 2 (PAKRP2) is an orphan kinesin in Arabidopsis thaliana that is thought to transport vesicles along phragmoplast microtubules for cell plate formation. Here, using single-molecule fluorescence microscopy, we show that PAKRP2 is the first orphan kinesin to exhibit processive plus-end-directed motility on single microtubules as individual homodimers. Our results show that PAKRP2 processivity is achieved despite having an exceptionally long (32 residues) neck linker. Furthermore, using high-resolution nanoparticle tracking, we find that PAKRP2 steps via a hand-over-hand mechanism that includes frequent side steps, a prolonged diffusional search of the tethered head, and tight coupling of the ATP hydrolysis cycle to the forward-stepping cycle. Interestingly, truncating the PAKRP2 neck linker to 14 residues decreases the run length of PAKRP2; thus, the long neck linker enhances the processive behavior. Based on the canonical model of kinesin stepping, such a long neck linker is expected to decrease the processivity and disrupt the coupling of ATP hydrolysis to forward stepping. Therefore, we conclude that PAKRP2 employs a noncanonical strategy for processive motility, wherein a long neck linker is coupled with a slow ATP hydrolysis rate to allow for an extended diffusional search during each step without sacrificing processivity or efficiency.


Asunto(s)
Proteínas de Arabidopsis/química , Cinesinas/química , Simulación de Dinámica Molecular , Movimiento (Física) , Dominios Proteicos
13.
Proc Natl Acad Sci U S A ; 116(15): 7314-7322, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30804205

RESUMEN

The biochemical basis of microtubule growth has remained elusive for over 30 years despite being fundamental for both cell division and associated chemotherapy strategies. Here, we combine interferometric scattering microscopy with recombinant tubulin to monitor individual tubulins binding to and dissociating from growing microtubule tips. We make direct, single-molecule measurements of tubulin association and dissociation rates. We detect two populations of transient dwell times and determine via binding-interface mutants that they are distinguished by the formation of one interprotofilament bond. Applying a computational model, we find that slow association kinetics with strong interactions along protofilaments best recapitulate our data and, furthermore, predicts plus-end tapering. Overall, we provide the most direct and complete experimental quantification of how microtubules grow to date.


Asunto(s)
Microtúbulos/química , Multimerización de Proteína , Tubulina (Proteína)/química , Humanos , Cinética , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
14.
J Gen Physiol ; 150(12): 1702-1721, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30322883

RESUMEN

The Shaker-like family of voltage-gated K+ channels comprises four functionally independent gene subfamilies, Shaker (Kv1), Shab (Kv2), Shaw (Kv3), and Shal (Kv4), each of which regulates distinct aspects of neuronal excitability. Subfamily-specific assembly of tetrameric channels is mediated by the N-terminal T1 domain and segregates Kv1-4, allowing multiple channel types to function independently in the same cell. Typical Shaker-like Kv subunits can form functional channels as homotetramers, but a group of mammalian Kv2-related genes (Kv5.1, Kv6s, Kv8s, and Kv9s) encodes subunits that have a "silent" or "regulatory" phenotype characterized by T1 self-incompatibility. These channels are unable to form homotetramers, but instead heteromerize with Kv2.1 or Kv2.2 to diversify the functional properties of these delayed rectifiers. While T1 self-incompatibility predicts that these heterotetramers could contain up to two regulatory (R) subunits, experiments show a predominance of 3:1R stoichiometry in which heteromeric channels contain a single regulatory subunit. Substitution of the self-compatible Kv2.1 T1 domain into the regulatory subunit Kv6.4 does not alter the stoichiometry of Kv2.1:Kv6.4 heteromers. Here, to identify other channel structures that might be responsible for favoring the 3:1R stoichiometry, we compare the sequences of mammalian regulatory subunits to independently evolved regulatory subunits from cnidarians. The most widespread feature of regulatory subunits is the presence of atypical substitutions in the highly conserved consensus sequence of the intracellular S6 activation gate of the pore. We show that two amino acid substitutions in the S6 gate of the regulatory subunit Kv6.4 restrict the functional stoichiometry of Kv2.1:Kv6.4 to 3:1R by limiting the formation and function of 2:2R heteromers. We propose a two-step model for the evolution of the asymmetric 3:1R stoichiometry, which begins with evolution of self-incompatibility to establish the regulatory phenotype, followed by drift of the activation gate consensus sequence under relaxed selection to limit stoichiometry to 3:1R.


Asunto(s)
Modelos Moleculares , Canales de Potasio con Entrada de Voltaje/fisiología , Secuencia de Aminoácidos , Animales , Cadmio , Ratones , Microscopía Fluorescente , Oocitos , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/química , Anémonas de Mar , Xenopus
15.
Methods Mol Biol ; 1805: 123-138, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29971716

RESUMEN

This chapter describes methods for high-speed, unloaded, in vitro single-molecule kinesin tracking experiments. Instructions are presented for constructing a total internal reflection dark-field microscope (TIRDFM) and labeling motors with gold nanoparticles. An AMP-PNP unlocking assay is introduced as a specialized means of capturing processive events in a reduced field of view. Finally, step-finding tools for analyzing high frame-rate tracking data are described.


Asunto(s)
Bioensayo/métodos , Cinesinas/metabolismo , Imagen Individual de Molécula/métodos , Adenilil Imidodifosfato/metabolismo , Animales , Calibración , Bovinos , Análisis de Datos , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo
16.
Biophys J ; 114(2): 400-409, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29401437

RESUMEN

Kinesin-based cargo transport in cells frequently involves the coordinated activity of multiple motors, including kinesins from different families that move at different speeds. However, compared to the progress at the single-molecule level, mechanisms by which multiple kinesins coordinate their activity during cargo transport are poorly understood. To understand these multimotor coordination mechanisms, defined pairs of kinesin-1 and kinesin-2 motors were assembled on DNA scaffolds and their motility examined in vitro. Although less processive than kinesin-1 at the single-molecule level, addition of kinesin-2 motors more effectively amplified cargo run lengths. By applying the law of total expectation to cargo binding durations in ADP, the kinesin-2 microtubule reattachment rate was shown to be fourfold faster than that of kinesin-1. This difference in microtubule binding rates was also observed in solution by stopped-flow. High-resolution tracking of a gold-nanoparticle-labeled motor with 1 ms and 2 nm precision revealed that kinesin-2 motors detach and rebind to the microtubule much more frequently than does kinesin-1. Finally, compared to cargo transported by two kinesin-1, cargo transported by two kinesin-2 motors more effectively navigated roadblocks on the microtubule track. These results highlight the importance of motor reattachment kinetics during multimotor transport and suggest a coordinated transport model in which kinesin-1 motors step effectively against loads whereas kinesin-2 motors rapidly unbind and rebind to the microtubule. This dynamic tethering by kinesin-2 maintains the cargo near the microtubule and enables effective navigation along crowded microtubules.


Asunto(s)
Cinesinas/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Cinética , Microtúbulos/metabolismo , Transporte de Proteínas
17.
Biophys J ; 112(12): 2615-2623, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636917

RESUMEN

Kinesin processivity, defined as the average number of steps that occur per interaction with a microtubule, is an important biophysical determinant of the motor's intracellular capabilities. Despite its fundamental importance to the diversity of tasks that kinesins carry out in cells, no existing quantitative model fully explains how structural differences between kinesins alter kinetic rates in the ATPase cycle to produce functional changes in processivity. Here we use high-resolution single-molecule microscopy to directly observe the stepping behavior of kinesin-1 and -2 family motors with different length neck-linker domains. We characterize a one-head-bound posthydrolysis vulnerable state where a kinetic race occurs between attachment of the tethered head to its next binding site and detachment of the bound head from the microtubule. We find that greater processivity is correlated with faster attachment of the tethered head from this vulnerable state. In compliment, we show that slowing detachment from this vulnerable state by strengthening motor-microtubule electrostatic interactions also increases processivity. Furthermore, we provide evidence that attachment of the tethered head is irreversible, suggesting a first passage model for exit from the vulnerable state. Overall, our results provide a kinetic framework for explaining kinesin processivity and for mapping structural differences to functional differences in diverse kinesin isoforms.


Asunto(s)
Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Escherichia coli , Humanos , Hidrólisis , Cinesinas/química , Cinesinas/genética , Cinética , Microtúbulos/química , Modelos Moleculares , Unión Proteica , Imagen Individual de Molécula , Solventes/química , Electricidad Estática
18.
Nat Commun ; 8: 14951, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393873

RESUMEN

Kinesins hydrolyse ATP to transport intracellular cargoes along microtubules. Kinesin neck linker (NL) functions as the central mechano-chemical coupling element by changing its conformation through the ATPase cycle. Here we report the crystal structure of kinesin-6 Zen4 in a nucleotide-free, apo state, with the NL initial segment (NIS) adopting a backward-docked conformation and the preceding α6 helix partially melted. Single-molecule fluorescence resonance energy transfer (smFRET) analyses indicate the NIS of kinesin-1 undergoes similar conformational changes under tension in the two-head bound (2HB) state, whereas it is largely disordered without tension. The backward-docked structure of NIS is essential for motility of the motor. Our findings reveal a key missing conformation of kinesins, which provides the structural basis of the stable 2HB state and offers a tension-based rationale for an optimal NL length to ensure processivity of the motor.


Asunto(s)
Apoproteínas/química , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Cinesinas/química , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografía por Rayos X , Drosophila , Transferencia Resonante de Energía de Fluorescencia , Cinesinas/metabolismo , Modelos Moleculares , Nucleótidos/química , Conformación Proteica , Ratas , Coloración y Etiquetado
19.
Traffic ; 18(5): 304-314, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28267259

RESUMEN

Axonal transport involves kinesin motors trafficking cargo along microtubules that are rich in microtubule-associated proteins (MAPs). Much attention has focused on the behavior of kinesin-1 in the presence of MAPs, which has overshadowed understanding the contribution of other kinesins such as kinesin-2 in axonal transport. We have previously shown that, unlike kinesin-1, kinesin-2 in vitro motility is insensitive to the neuronal MAP Tau. However, the mechanism by which kinesin-2 efficiently navigates Tau on the microtubule surface is unknown. We hypothesized that mammalian kinesin-2 side-steps to adjacent protofilaments to maneuver around MAPs. To test this, we used single-molecule imaging to track the characteristic run length and protofilament switching behavior of kinesin-1 and kinesin-2 motors in the absence and presence of 2 different microtubule obstacles. Under all conditions tested, kinesin-2 switched protofilaments more frequently than kinesin-1. Using computational modeling that recapitulates run length and switching frequencies in the presence of varying roadblock densities, we conclude that kinesin-2 switches protofilaments to navigate around microtubule obstacles. Elucidating the kinesin-2 mechanism of navigation on the crowded microtubule surface provides a refined view of its contribution in facilitating axonal transport.


Asunto(s)
Transporte Axonal/fisiología , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Bovinos , Simulación por Computador , Citoesqueleto/metabolismo , Drosophila/metabolismo , Transporte de Proteínas/fisiología , Ratas , Proteínas tau/metabolismo
20.
Nat Commun ; 7: 13135, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27731314

RESUMEN

TRPV ion channels are directly activated by sensory stimuli and participate in thermo-, mechano- and chemo-sensation. They are also hypothesized to respond to endogenous agonists that would modulate sensory responses. Here, we show that the nicotinamide (NAM) form of vitamin B3 is an agonist of a Caenorhabditis elegans TRPV channel. Using heterologous expression in Xenopus oocytes, we demonstrate that NAM is a soluble agonist for a channel consisting of the well-studied OSM-9 TRPV subunit and relatively uncharacterized OCR-4 TRPV subunit as well as the orthologous Drosophila Nan-Iav TRPV channel, and we examine stoichiometry of subunit assembly. Finally, we show that behaviours mediated by these C. elegans and Drosophila channels are responsive to NAM, suggesting conservation of activity of this soluble endogenous metabolite on TRPV activity. Our results in combination with the role of NAM in NAD+ metabolism suggest an intriguing link between metabolic regulation and TRPV channel activity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas del Tejido Nervioso/genética , Niacinamida/farmacología , Subunidades de Proteína/genética , Canales Catiónicos TRPV/genética , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/agonistas , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia Conservada , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expresión Génica , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/metabolismo , Niacinamida/metabolismo , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Subunidades de Proteína/agonistas , Subunidades de Proteína/metabolismo , Sensación/efectos de los fármacos , Sensación/fisiología , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...