Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Neuropsychopharmacology ; 48(12): 1742-1751, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37349472

RESUMEN

Glutamatergic NMDA receptors (NMDAR) are critical for cognitive function, and their reduced expression leads to intellectual disability. Since subpopulations of NMDARs exist in distinct subcellular environments, their functioning may be unevenly vulnerable to genetic disruption. Here, we investigate synaptic and extrasynaptic NMDARs on the major output neurons of the prefrontal cortex in mice deficient for the obligate NMDAR subunit encoded by Grin1 and wild-type littermates. With whole-cell recording in brain slices, we find that single, low-intensity stimuli elicit surprisingly-similar glutamatergic synaptic currents in both genotypes. By contrast, clear genotype differences emerge with manipulations that recruit extrasynaptic NMDARs, including stronger, repetitive, or pharmacological stimulation. These results reveal a disproportionate functional deficit of extrasynaptic NMDARs compared to their synaptic counterparts. To probe the repercussions of this deficit, we examine an NMDAR-dependent phenomenon considered a building block of cognitive integration, basal dendrite plateau potentials. Since we find this phenomenon is readily evoked in wild-type but not in Grin1-deficient mice, we ask whether plateau potentials can be restored by an adult intervention to increase Grin1 expression. This genetic manipulation, previously shown to restore cognitive performance in adulthood, successfully rescues electrically-evoked basal dendrite plateau potentials after a lifetime of NMDAR compromise. Taken together, our work demonstrates NMDAR subpopulations are not uniformly vulnerable to the genetic disruption of their obligate subunit. Furthermore, the window for functional rescue of the more-sensitive integrative NMDARs remains open into adulthood.


Asunto(s)
Neuronas , Receptores de N-Metil-D-Aspartato , Ratones , Animales , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-36251462

RESUMEN

Introduction: Cannabis use has been associated with an increased incidence of psychiatric disorders, yet the underlying neurobiological processes mediating these associations are poorly understood. Whereas exposure to Δ9-tetrahydrocannabinol (THC) has been associated with the development or exacerbation of psychosis, treatment with cannabidiol (CBD) has been associated with amelioration of psychosis. In this study, we demonstrate a complex effect of CBD in mouse models of psychosis, based on factors, including dose, strain, and genotype. Methods: Adult GluN1 knockdown (GluN1KD) and dopamine transporter knockout (DATKO) mice (almost equally balanced for male/female) were acutely treated with vehicle, THC (4 mg/kg), CBD (60, 120 mg/kg), or THC:CBD (1:15, 4:60 mg/kg) and tested in behavioral assays. Results: GluN1KD and DATKO mice displayed hyperactivity, impaired habituation, and sensorimotor gating, along with increased stereotypy and vertical activity. THC, alone and in combination with CBD, produced a robust "dampening" effect on the exploratory behavior regardless of strain or genotype. CBD exhibited a more complex profile. At 60 mg/kg, CBD had minimal effects on horizontal activity, but the effects varied in terms of directionality (increase vs. decrease) in other parameters; effects on stereotypic behaviors differ by genotype, while effects on vertical exploration differ by strain×genotype. CBD at 120 mg/kg had a "dampening" effect on exploration overall, except in GluN1KD mice, where no effect was observed. In terms of sensorimotor gating, both THC and CBD had minimal effects, except for 120 mg/kg CBD, which exacerbated the acoustic startle response. Conclusions: Here, we present a study that highlights the complex mechanism of phytocannabinoids, particularly CBD, in models of psychosis-like behavior. These data require careful interpretation, as agonism of the cannabinoid receptor 1 (CB1) resulting in a decrease in locomotion can be misinterpreted as "antipsychotic-like" activity in murine behavioral outputs of psychosis. Importantly, the THC-mediated decrease in hyperexploratory behavior observed in our models (alone or in combination) was not specific to the genetic mutants, but rather was observed regardless of strain or genotype. Furthermore, CBD treatment, when comparing mutants with their wild-type littermate controls, showed little to no "antipsychotic-like" activity in our models. Therefore, it is not only important to consider dose when designing/interpreting therapeutically driven phytocannabinoid studies, but also effects of strain or genetic vulnerability respective to the general population.

4.
Neuropsychopharmacology ; 46(2): 413-422, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33036015

RESUMEN

The endocannabinoid system (eCBs) encompasses the endocannabinoids, their synthetic and degradative enzymes, and cannabinoid (CB) receptors. The eCBs mediates inhibition of neurotransmitter release and acts as a major homeostatic system. Many aspects of the eCBs are altered in a number of psychiatric disorders including schizophrenia, which is characterized by dysregulation of dopaminergic signaling. The GluN1-Knockdown (GluN1KD) and Dopamine Transporter Knockout (DATKO) mice are models of hyperdopaminergia, which display abnormal psychosis-related behaviors, including hyperlocomotion and changes in pre-pulse inhibition (PPI). Here, we investigate the ability of a novel CB1 receptor (CB1R) allosteric modulator, ABM300, to ameliorate these dysregulated behaviors. ABM300 was characterized in vitro (receptor binding, ß-arrestin2 recruitment, ERK1/2 phosphorylation, cAMP inhibition) and in vivo (anxiety-like behaviors, cannabimimetic effects, novel environment exploratory behavior, pre-pulse inhibition, conditioned avoidance response) to assess the effects of the compound in dysregulated behaviors within the transgenic models. In vitro, ABM300 increased CB1R agonist binding but acted as an inhibitor of CB1R agonist induced signaling, including ß-arrestin2 translocation, ERK phosphorylation and cAMP inhibition. In vivo, ABM300 did not elicit anxiogenic-like or cannabimimetic effects, but it decreased novelty-induced hyperactivity, exaggerated stereotypy, and vertical exploration in both transgenic models of hyperdopaminergia, as well as normalizing PPI in DATKO mice. The data demonstrate for the first time that a CB1R allosteric modulator ameliorates the behavioral deficits in two models of increased dopamine, warranting further investigation as a potential therapeutic target in psychiatry.


Asunto(s)
Cannabinoides , Endofenotipos , Animales , Ratones , Ratones Noqueados , Receptor Cannabinoide CB1/genética , Receptores de Cannabinoides , Roedores
5.
Mol Psychiatry ; 26(7): 2929-2942, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32807843

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are required to shape activity-dependent connections in the developing and adult brain. Impaired NMDAR signalling through genetic or environmental insults causes a constellation of neurodevelopmental disorders that manifest as intellectual disability, epilepsy, autism, or schizophrenia. It is not clear whether the developmental impacts of NMDAR dysfunction can be overcome by interventions in adulthood. This question is paramount for neurodevelopmental disorders arising from mutations that occur in the GRIN genes, which encode NMDAR subunits, and the broader set of mutations that disrupt NMDAR function. We developed a mouse model where a congenital loss-of-function allele of Grin1 can be restored to wild type by gene editing with Cre recombinase. Rescue of NMDARs in adult mice yields surprisingly robust improvements in cognitive functions, including those that are refractory to treatment with current medications. These results suggest that neurodevelopmental disorders arising from NMDAR deficiency can be effectively treated in adults.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Alelos , Animales , Encéfalo/metabolismo , Edición Génica , Mutación con Pérdida de Función , Ratones , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-33152384

RESUMEN

CB1 is the most abundant GPCR found in the mammalian brain. It has garnered considerable attention as a potential therapeutic drug target. CB1 is involved in a wide range of physiological and psychiatric processes and has the potential to be targeted in a wide range of disease states. However, most of the selective and non-selective synthetic CB1 agonists and antagonists/inverse agonists developed to date are primarily used as research tools. No novel synthetic cannabinoids are currently in the clinic for use in psychiatric illness; synthetic analogues of the phytocannabinoid THC are on the market to treat nausea and vomiting caused by cancer chemotherapy, along with off-label use for pain. Novel strategies are being explored to target CB1, but with emphasis on the elimination or mitigation of the potential psychiatric adverse effects that are observed by central agonism/antagonism of CB1. New pharmacological options are being pursued that may avoid these adverse effects while preserving the potential therapeutic benefits of CB1 modulation. Allosteric modulation of CB1 is one such approach. In this review, we will summarize and critically analyze both the in vitro characterization and in vivo validation of CB1 allosteric modulators developed to date, with a focus on CNS therapeutic effects.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Enfermedades del Sistema Nervioso Central , Receptor Cannabinoide CB1 , Animales , Humanos , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/metabolismo , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo
7.
Sci Rep ; 9(1): 5087, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30911039

RESUMEN

Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness.


Asunto(s)
Encéfalo/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Lactatos/metabolismo , Esquizofrenia/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/citología , Diagnóstico , Modelos Animales de Enfermedad , Lóbulo Frontal/citología , Lóbulo Frontal/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley
8.
Mol Neurobiol ; 56(6): 4492-4517, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30338483

RESUMEN

We utilized a cell-level approach to examine glycolytic pathways in the DLPFC of subjects with schizophrenia (n = 16) and control (n = 16) and found decreased mRNA expression of glycolytic enzymes in pyramidal neurons, but not astrocytes. To replicate these novel bioenergetic findings, we probed independent datasets for bioenergetic targets and found similar abnormalities. Next, we used a novel strategy to build a schizophrenia bioenergetic profile by a tailored application of the Library of Integrated Network-Based Cellular Signatures data portal (iLINCS) and investigated connected cellular pathways, kinases, and transcription factors using Enrichr. Finally, with the goal of identifying drugs capable of "reversing" the bioenergetic schizophrenia signature, we performed a connectivity analysis with iLINCS and identified peroxisome proliferator-activated receptor (PPAR) agonists as promising therapeutic targets. We administered a PPAR agonist to the GluN1 knockdown model of schizophrenia and found it improved long-term memory. Taken together, our findings suggest that tailored bioinformatics approaches, coupled with the LINCS library of transcriptional signatures of chemical and genetic perturbagens, may be employed to identify novel treatment strategies for schizophrenia and related diseases.


Asunto(s)
Metabolismo Energético , Redes Reguladoras de Genes , Esquizofrenia/metabolismo , Esquizofrenia/terapia , Animales , Análisis por Conglomerados , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Descubrimiento de Drogas , Metabolismo Energético/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Captura por Microdisección con Láser , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Pioglitazona/farmacología , Inhibición Prepulso/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reflejo de Sobresalto/efectos de los fármacos , Reproducibilidad de los Resultados , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Conducta Estereotipada/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
9.
Front Pharmacol ; 9: 953, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233365

RESUMEN

The trace amine associated receptor 1 (TAAR1) is a G-protein coupled receptor expressed in the monoaminergic regions of the brain, and represents a potential novel therapeutic target for the treatment of neurological disorders. While selective agonists for TAAR1 have been successfully identified, only one high affinity TAAR1 antagonist has been described thus far. We previously identified four potential low potency TAAR1 antagonists through an in silico screen on a TAAR1 homology model. One of the identified antagonists (compound 22) was predicted to have favorable physicochemical properties, which would allow the drug to cross the blood brain barrier. In vivo studies were therefore carried out and showed that compound 22 potentiates amphetamine- and cocaine-mediated locomotor activity. Furthermore, electrophysiology experiments demonstrated that compound 22 increased firing of dopamine neurons similar to EPPTB, the only known TAAR1 antagonist. In order to assess whether the effects of compound 22 were mediated through TAAR1, experiments were carried out on TAAR1-KO mice. The results showed that compound 22 is able to enhance amphetamine- and cocaine-mediated locomotor activity, even in TAAR1-KO mice, suggesting that the in vivo effects of this compound are not mediated by TAAR1. In collaboration with Psychoactive Drug Screening Program, we attempted to determine the targets for compound 22. Psychoactive Drug Screening Program (PDSP) results suggested several potential targets for compound 22 including, the dopamine, norepinephrine and serotonin transporters; as well as sigma 1 and 2 receptors. Our follow-up studies using heterologous cell systems showed that the dopamine transporter is not a target of compound 22. Therefore, the biological target of compound 22 mediating its psychoactive effects still remains unknown.

10.
Schizophr Bull ; 43(4): 891-899, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28126896

RESUMEN

Background: Postsynaptic density-95 (PSD-95) protein expression is dysregulated in schizophrenia in a variety of brain regions. We have designed experiments to examine PSD-95 mRNA splice variant expression in the dorsolateral prefrontal cortex from subjects with schizophrenia. Methods: We performed quantitative PCR and western blot analysis to measure PSD-95 expression in schizophrenia vs control subjects, rodent haloperidol treatment studies, rodent postmortem interval studies, and GluN1 knockdown (KD) mice vs controls. Results: We found decreased mRNA expression of beta (t = 4.506, df = 383, P < .0001) and truncated (t = 3.378, df = 383, P = .0008) isoforms of PSD-95, whereas alpha was unchanged. Additionally, we found decreased PSD-95 protein expression in schizophrenia (t = 2.746, df = 71, P = .0076). We found no correlation between PSD-95 protein and alpha, beta, or truncated mRNA isoforms in schizophrenia. PSD-95 beta transcript was increased (t = 3.346, df = 14, P < .05) in the GluN1 KD mouse model of schizophrenia. There was an increase in PSD-95 alpha mRNA expression (t = 2.905, df = 16, P < .05) in rats following long-term haloperidol administration. Conclusions: Our findings describe a unique pathophysiology of specific PSD-95 isoform dysregulation in schizophrenia, chronic neuroleptic treatment, and a genetic lesion mouse model of drastically reduced N-methyl-d-aspartate receptor (NMDAR) complex expression. These data indicate that regulation of PSD-95 is multifaceted, may be isoform specific, and biologically relevant for synaptic signaling function. Specifically, NMDAR-mediated synaptic remodeling, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking and interaction may be impaired in schizophrenia by decreased PSD-95 beta and truncated expression (respectively). Further, increased PSD-95 beta transcript in the GluN1 KD mouse model poses a potential compensatory rescue of NMDAR-mediated function via increased postsynaptic throughput of the severely reduced GluN1 signal. Together, these data propose that disruption of excitatory signaling complexes through genetic (GluN1 KD), pharmacologic (antipsychotics), or disease (schizophrenia) mechanisms specifically dysregulates PSD-95 expression.


Asunto(s)
Antipsicóticos/farmacología , Homólogo 4 de la Proteína Discs Large/metabolismo , Haloperidol/farmacología , Corteza Prefrontal/metabolismo , Isoformas de Proteínas/metabolismo , Sitios de Empalme de ARN , Esquizofrenia/metabolismo , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Proteínas del Tejido Nervioso , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato
11.
ACS Chem Neurosci ; 7(12): 1706-1716, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27617634

RESUMEN

Abnormalities in the signaling of the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) within cortical and limbic brain regions are thought to underlie many of the complex cognitive and affective symptoms observed in individuals with schizophrenia. The M1 muscarinic acetylcholine receptor (mAChR) subtype is a closely coupled signaling partner of the NMDAR. Accumulating evidence suggests that development of selective positive allosteric modulators (PAMs) of the M1 receptor represent an important treatment strategy for the potential normalization of disruptions in NMDAR signaling in patients with schizophrenia. In the present studies, we evaluated the effects of the novel and highly potent M1 PAM, VU6004256, in ameliorating selective prefrontal cortical (PFC)-mediated physiologic and cognitive abnormalities in a genetic mouse model of global reduction in the NR1 subunit of the NMDAR (NR1 knockdown [KD]). Using slice-based extracellular field potential recordings, deficits in muscarinic agonist-induced long-term depression (LTD) in layer V of the PFC in the NR1 KD mice were normalized with bath application of VU6004256. Systemic administration of VU6004256 also reduced excessive pyramidal neuron firing in layer V PFC neurons in awake, freely moving NR1 KD mice. Moreover, selective potentiation of M1 by VU6004256 reversed the performance impairments of NR1 KD mice observed in two preclinical models of PFC-mediated learning, specifically the novel object recognition and cue-mediated fear conditioning tasks. VU6004256 also produced a robust, dose-dependent reduction in the hyperlocomotor activity of NR1 KD mice. Taken together, the current findings provide further support for M1 PAMs as a novel therapeutic approach for the PFC-mediated impairments in schizophrenia.


Asunto(s)
Colinérgicos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Proteínas del Tejido Nervioso/deficiencia , Nootrópicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Colinérgicos/farmacocinética , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/metabolismo , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Miedo/efectos de los fármacos , Miedo/fisiología , Técnicas de Silenciamiento del Gen , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/genética , Nootrópicos/farmacocinética , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Técnicas de Cultivo de Tejidos
12.
Eur J Neurosci ; 40(1): 2255-63, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24754704

RESUMEN

Chronic N-methyl-d-aspartate receptor (NMDAR) hypofunction has been proposed as a contributing factor to symptoms of schizophrenia. However, it is unclear how sustained NMDAR hypofunction throughout development affects other neurotransmitter systems that have been implicated in the disease. Dopamine neuron biochemistry and activity were examined to determine whether sustained NMDAR hypofunction causes a state of hyperdopaminergia. We report that a global, genetic reduction in NMDARs led to a remodeling of dopamine neurons, substantially affecting two key regulators of dopamine homeostasis, i.e., tyrosine hydroxylase and the dopamine transporter. In NR1 knockdown mice, dopamine synthesis and release were attenuated, and dopamine clearance was increased. Although these changes would have the effect of reducing dopamine transmission, we demonstrated that a state of hyperdopaminergia existed in these mice because dopamine D2 autoreceptors were desensitized. In support of this conclusion, NR1 knockdown dopamine neurons have higher tonic firing rates. Although the tonic firing rates are higher, phasic signaling is impaired, and dopamine overflow cannot be achieved with exogenous high-frequency stimulation that models phasic firing. Through the examination of several parameters of dopamine neurotransmission, we provide evidence that chronic NMDAR hypofunction leads to a state of elevated synaptic dopamine. Compensatory mechanisms to attenuate hyperdopaminergia also impact the ability to generate dopamine surges through phasic firing.


Asunto(s)
Encéfalo/fisiopatología , Neuronas Dopaminérgicas/fisiología , Proteínas del Tejido Nervioso/deficiencia , Receptores de N-Metil-D-Aspartato/deficiencia , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Animales , Dopamina/biosíntesis , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Estimulación Eléctrica , Técnicas de Silenciamiento del Gen , Potenciales de la Membrana/fisiología , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Receptores de Dopamina D2/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Técnicas de Cultivo de Tejidos , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA