Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Nucl Med ; 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39477492

RESUMEN

Radiopharmaceutical therapies (RPTs) based on fibroblast activation protein (FAP) and FAP inhibitors (FAPIs) are a new option for progressive metastatic cancer in patients pretreated multiple times. To date, published in-human data refer to initial experiences with ß-emitting 90Y- and 177Lu-based RPT. However, the short tumor retention time of FAPI ligands is considered a major limitation of FAPI RPT. Therefore, fractionated FAPI RPT with 213Bi, an α-emitter with a half-life of 46 min, appears to be a promising FAPI RPT regimen. Here, we report on our initial experiences with regard to the feasibility, tolerability, and response of fractionated 213Bi-FAPI-46 RPT. Methods: Six patients (4 women and 2 men) with progressive metastatic solid tumors (3 colon cancer, 1 anal cancer, 1 breast cancer, and 1 prostate cancer) aged 16-77 y were treated with a mean of 1,609 MBq of 213Bi-FAPI-46, fractionated into 53 single applications (range, 5-12 RPT applications per patient; mean, 8.8 applications) over a period of up to 107 h per patient. Of the 6 patients, 4 patients received adjuvant treatment with pembrolizumab. 18F-FDG (4 patients) and 68Ga-FAPI-46 (5 patients) PET/CT scans were performed before and after RPT. PET images were assessed visually and by calculating total lesion glycolysis and total lesion FAPI. Results: RPT with 213Bi-FAPI-46 was well tolerated without adverse side effects. In terms of visual response assessment, there was 1 partial response (16.7%), 1 patient with stable disease (16.7%), and 4 patients with progressive disease (66.7%). Concordantly, total lesion glycolysis and total lesion FAPI were decreased in the responding patient (not applicable and -24.3%, respectively), slightly decreased in the patient with stable disease (-10.6% and -5.9%, respectively), and increased in the 4 patients with progression (mean, +104.4% and +321.3%, respectively). Conclusion: Fractionated FAPI RPT with the short-half-life α-emitter 213Bi-FAPI-46 is a promising approach that matches the pharmacokinetics of FAPI-46 better than the 177Lu- or 90Y-labeled compounds. In this pilot project, fractionated RPT with 213Bi-FAPI-46 showed good clinical tolerability and even led to regressive or stable disease in the short term in 2 of 6 patients. Further studies with larger patient cohorts are required to evaluate the actual efficacy and long-term effects of this variant of FAPI RPT.

2.
Gels ; 10(8)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39195030

RESUMEN

Anti-VEGF agents, e.g., bevacizumab, are used in retinal surgery, while their interaction with silicone oils and novel hydrogels remains unclear. This study examines the in vitro pharmacokinetics of bevacizumab in silicone oil-filled eyes compared to various hydrogel replacements and the porcine vitreous body as well as its impact on the interface tension of silicone oils. An in vitro model filled with light or heavy silicone oil, porcine vitreous bodies, or hydrogels (alginate and polyethylene glycol (PEG)-based) was equilibrated with a balanced salt solution. Monitoring of bevacizumab in the aqueous phase was conducted for up to 24 h, and its effect on interfacial tension was studied. Significant differences in bevacizumab partitioning were observed across endotamponades after 24 h. In silicone oils, bevacizumab was found exclusively in the aqueous phase, while in the other endotamponades, it accumulated in the gel phase (96.1% in porcine vitreous body, 83.5% in alginate, and 27.6% in PEG-based hydrogel). Bevacizumab significantly reduced interfacial tension (40 to 8 mN/m), possibly enhancing silicone oil emulsification. The type of endotamponade heavily influenced the bevacizumab concentration in the aqueous. The vitreous body and replacement hydrogels likely serve as a drug reservoir, highlighting the need for in vivo studies to explore these interactions prior to clinical application.

3.
Adv Healthc Mater ; 13(14): e2303654, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38387090

RESUMEN

Oral delivery of peptide therapeutics faces multiple challenges due to their instability in the gastrointestinal tract and low permeation capability. In this study, the aim is to develop a liposomal nanocarrier formulation to enable the oral delivery of the vancomycin-peptide derivative FU002. FU002 is a promising, resistance-breaking, antibiotic which exhibits poor oral bioavailability, limiting its potential therapeutic use. To increase its oral bioavailability, FU002 is incorporated into tetraether lipid-stabilized liposomes modified with cyclic cell-penetrating peptides on the liposomal surface. This liposomal formulation shows strong binding to Caco-2 cells without exerting cytotoxic effects in vitro. Pharmacokinetics studies in vivo in rats reveal increased oral bioavailability of liposomal FU002 when compared to the free drug. In vitro and in vivo antimicrobial activity of FU002 are preserved in the liposomal formulation. As a highlight, oral administration of liposomal FU002 results in significant therapeutic efficacy in a murine systemic infection model. Thus, the presented nanotechnological approach provides a promising strategy for enabling oral delivery of this highly active vancomycin derivative.


Asunto(s)
Antibacterianos , Liposomas , Vancomicina , Vancomicina/química , Vancomicina/farmacocinética , Vancomicina/administración & dosificación , Vancomicina/farmacología , Liposomas/química , Animales , Administración Oral , Células CACO-2 , Humanos , Ratas , Ratones , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/farmacocinética , Antibacterianos/administración & dosificación , Portadores de Fármacos/química , Nanopartículas/química , Ratas Sprague-Dawley , Masculino , Disponibilidad Biológica
4.
Nanomedicine ; 56: 102731, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158147

RESUMEN

Antibiotic resistance still represents a global health concern which diminishes the pool of effective antibiotics. With the vancomycin derivative FU002, we recently reported a highly potent substance active against Gram-positive bacteria with the potential to overcome vancomycin resistance. However, the translation of its excellent antimicrobial activity into clinical efficiency could be hampered by its rapid elimination from the blood stream. To improve its pharmacokinetics, we encapsulated FU002 in PEGylated liposomes. For PEG-liposomal FU002, no relevant cytotoxicity on liver, kidney and red blood cells was observed. Studies in Wistar rats revealed a significantly prolonged blood circulation of the liposomal antibiotic. In microdilution assays it could be demonstrated that encapsulation does not diminish the antimicrobial activity against staphylococci and enterococci. Highlighting its great potency, liposomal FU002 exhibited a superior therapeutic efficacy when compared to the free form in a Galleria mellonella larvae infection model.


Asunto(s)
Liposomas , Vancomicina , Ratas , Animales , Vancomicina/farmacología , Ratas Wistar , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Staphylococcus
5.
Biochem J ; 481(1): 33-44, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38112318

RESUMEN

Advanced glycation end products (AGEs) are non-enzymatic post-translational modifications of amino acids and are associated with diabetic complications. One proposed pathomechanism is the impaired processing of AGE-modified proteins or peptides including prohormones. Two approaches were applied to investigate whether substrate modification with AGEs affects the processing of substrates like prohormones to the active hormones. First, we employed solid-phase peptide synthesis to generate unmodified as well as AGE-modified protease substrates. Activity of proteases towards these substrates was quantified. Second, we tested the effect of AGE-modified proinsulin on the processing to insulin. Proteases showed the expected activity towards the unmodified peptide substrates containing arginine or lysine at the C-terminal cleavage site. Indeed, modification with Nε-carboxymethyllysine (CML) or methylglyoxal-hydroimidazolone 1 (MG-H1) affected all proteases tested. Cysteine cathepsins displayed a reduction in activity by ∼50% towards CML and MG-H1 modified substrates. The specific proteases trypsin, proprotein convertases subtilisin-kexins (PCSKs) type proteases, and carboxypeptidase E (CPE) were completely inactive towards modified substrates. Proinsulin incubation with methylglyoxal at physiological concentrations for 24 h resulted in the formation of MG-modified proinsulin. The formation of insulin was reduced by up to 80% in a concentration-dependent manner. Here, we demonstrate the inhibitory effect of substrate-AGE modifications on proteases. The finding that PCSKs and CPE, which are essential for prohormone processing, are inactive towards modified substrates could point to a yet unrecognized pathomechanism resulting from AGE modification relevant for the etiopathogenesis of diabetes and the development of obesity.


Asunto(s)
Diabetes Mellitus , Productos Finales de Glicación Avanzada , Humanos , Piruvaldehído/metabolismo , Proinsulina , Péptidos/química , Endopeptidasas
6.
Artículo en Inglés | MEDLINE | ID: mdl-38087181

RESUMEN

The blood-brain barrier (BBB) poses a major obstacle in the treatment of all types of central nervous system (CNS) diseases. Small interfering RNA (siRNA) offers in principle a promising therapeutic approach by downregulating disease-related genes via RNA interference. However, the BBB is a formidable barrier for macromolecules such as nucleic acids. In an effort to develop a brain-targeted strategy for siRNA delivery systems formed by electrostatic interactions with cationic polymers (polyplexes (PXs)), we investigated the suitability of the well-known surfactant-based approach for Apolipoprotein E (ApoE)-functionalization of nanoparticles (NPs). The aim of this present work was to investigate if ApoE coating of siRNA PXs formed with cationic branched 25-kDa poly(ethyleneimine) (b-PEI) and nylon-3 polymers without or after precoating with polysorbate 80 (PS 80) would promote successful delivery across the BBB. We utilized highly hydrophobic NM0.2/CP0.8 nylon-3 polymers to evaluate the effects of hydrophobic cyclopentyl (CP) subunits on ApoE binding efficacy and observed successful ApoE binding with and without PS 80 precoating to the nylon-3 but not the PEI polyplexes. Accordingly, ApoE-coated nylon-3 polyplexes showed significantly increased uptake and gene silencing in U87 glioma cells but no benefit in vivo. In conclusion, further optimization of ApoE-functionalized polyplexes and more sophisticated in vitro models are required to achieve more successful in vitro-in vivo translation in future approaches.

7.
J Control Release ; 360: 613-629, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37437848

RESUMEN

The blood-brain barrier (BBB) is a highly selective biological barrier that represents a major bottleneck in the treatment of all types of central nervous system (CNS) disorders. Small interfering RNA (siRNA) offers in principle a promising therapeutic approach, e.g., for brain tumors, by downregulating brain tumor-related genes and inhibiting tumor growth via RNA interference. In an effort to develop efficient siRNA nanocarriers for crossing the BBB, we utilized polyethyleneimine (PEI) polymers hydrophobically modified with either stearic-acid (SA) or dodecylacrylamide (DAA) subunits and evaluated their suitability for delivering siRNA across the BBB in in vitro and in vivo BBB models depending on their structure. Physicochemical characteristics of siRNA-polymer complexes (polyplexes (PXs)), e.g., particle size and surface charge, were measured by dynamic light scattering and laser Doppler anemometry, whereas siRNA condensation ability of polymers and polyplex stability was evaluated by spectrophotometric methods. The composition of the biomolecule corona that absorbs on polyplexes upon encountering physiological fluids was investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method. Cellular internalization abilities of PXs into brain endothelial cells (hCMEC/D3) was confirmed, and a BBB permeation assay using a human induced pluripotent stem cell (hiPSC)-derived BBB model revealed similar abilities to cross the BBB for all formulations under physiological conditions. However, biodistribution studies of radiolabeled PXs in mice were inconsistent with in vitro results as the detected amount of radiolabeled siRNA in the brain delivered with PEI PXs was higher compared to PEI-SA PXs. Taken together, PEI PXs were shown to be a suitable nanocarrier to deliver small amounts of siRNA across the BBB into the brain but more sophisticated human BBB models that better represent physiological conditions and biodistribution are required to provide highly predictive in vitro data for human CNS drug development in the future.


Asunto(s)
Células Madre Pluripotentes Inducidas , Polietileneimina , Humanos , Animales , Ratones , Polietileneimina/química , ARN Interferente Pequeño , Barrera Hematoencefálica/metabolismo , Distribución Tisular , Células Endoteliales/metabolismo , ARN Bicatenario , Polímeros/química , Permeabilidad
8.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142728

RESUMEN

An approximate number of 250 million people worldwide are chronically infected with hepatitis B virus, making them susceptible to a coinfection with hepatitis D virus. The superinfection causes the most severe form of a viral hepatitis and thus drastically worsens the course of the disease. Until recently, the only available therapy consisted of interferon-α, only eligible for a minority of patients. In July 2020, the EMA granted Hepcludex conditional marketing authorization throughout the European Union. This first-in-class entry inhibitor offers the promise to prevent the spread in order to gain control and eventually participate in curing hepatitis B and D. Hepcludex is an example of how understanding the viral lifecycle can give rise to new therapy options. Sodium taurocholate co-transporting polypeptide, the virus receptor and the target of Hepcludex, and other targets of hepatitis D therapy currently researched are reviewed in this work. Farnesyltransferase inhibitors such as Lonafarnib, targeting another essential molecule in the HDV life cycle, represent a promising target for hepatitis D therapy. Farnesyltransferase attaches a farnesyl (isoprenyl) group to proteins carrying a C-terminal Ca1a2X (C: cysteine, a: aliphatic amino acid, X: C-terminal amino acid) motif like the large hepatitis D virus antigen. This modification enables the interaction of the HBV/HDV particle and the virus envelope proteins. Lonafarnib, which prevents this envelopment, has been tested in clinical trials. Targeting the lifecycle of the hepatitis B virus needs to be considered in hepatitis D therapy in order to cure a patient from both coexisting infections. Nucleic acid polymers target the hepatitis B lifecycle in a manner that is not yet understood. Understanding the possible targets of the hepatitis D virus therapy is inevitable for the improvement and development of a sufficient therapy that HDV patients are desperately in need of.


Asunto(s)
Hepatitis B , Hepatitis D , Ácidos Nucleicos , Antivirales/uso terapéutico , Cisteína , Farnesiltransferasa , Hepatitis B/tratamiento farmacológico , Virus de la Hepatitis B/metabolismo , Hepatitis D/tratamiento farmacológico , Hepatitis D/metabolismo , Virus de la Hepatitis Delta , Humanos , Interferón-alfa/uso terapéutico , Ácidos Nucleicos/uso terapéutico , Polímeros/uso terapéutico , Receptores Virales , Ácido Taurocólico , Proteínas del Envoltorio Viral/metabolismo
9.
Front Chem ; 10: 898692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017165

RESUMEN

Prostate-specific membrane antigen (PSMA) binding tracers are promising agents for the targeting of prostate tumors. To further optimize the clinically established radiopharmaceutical PSMA-617, novel PSMA ligands for prostate cancer endoradiotherapy were developed. A series of PSMA binding tracers that comprise a benzyl group at the chelator moiety were obtained by solid-phase synthesis. The compounds were labeled with 68Ga or 177Lu. Competitive cell-binding assays and internalization assays were performed using the cell line C4-2, a subline of the PSMA positive cell line LNCaP (human lymph node carcinoma of the prostate). Positron emission tomography (PET) imaging and biodistribution studies were conducted in a C4-2 tumor bearing BALB/c nu/nu mouse model. All 68Ga-labeled ligands were stable in human serum over 2 h; 177Lu-CA030 was stable over 72 h. The PSMA ligands revealed inhibition potencies [Ki] (equilibrium inhibition constants) between 4.8 and 33.8 nM. The percentage of internalization of the injected activity/106 cells of 68Ga-CA028, 68Ga-CA029, and 68Ga-CA030 was 41.2 ± 2.7, 44.3 ± 3.9, and 53.8 ± 5.4, respectively; for the comparator 68Ga-PSMA-617, 15.5 ± 3.1 was determined. Small animal PET imaging of the compounds showed a high tumor-to-background contrast. Organ distribution studies revealed high specific uptake in the tumor, that is, approximately 34.4 ± 9.8% of injected dose per gram (%ID/g) at 1 h post injection for 68Ga-CA028. At 1 h p.i., 68Ga-CA028 and 68Ga-CA030 demonstrated lower kidney uptake than 68Ga-PSMA-617, but at later time points, kidney time-activity curves converge. In line with the preclinical data, first diagnostic PET imaging using 68Ga-CA028 and 68Ga-CA030 revealed high-contrast detection of bone and lymph node lesions in patients with metastatic prostate cancer. The novel PSMA ligands, in particular CA028 and CA030, are promising agents for targeting PSMA-positive tumor lesions as shown in the preclinical evaluation and in a first patient, respectively. Thus, clinical translation of 68Ga-CA028 and 68Ga/177Lu-CA030 for diagnostics and endoradiotherapy of prostate cancer in larger cohorts of patients is warranted.

10.
Drug Discov Today ; 27(10): 103311, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35787480

RESUMEN

Antibody-drug conjugates (ADCs) are on the brink of widespread use for the targeted treatment of cancer. ADCs manage the toxicity of drugs with unacceptable narrow therapeutic windows by guiding highly toxic compounds to the target cells, thereby sparing healthy cells. In this review, we describe approved ADCs and discuss their modes of action, together with medicinal chemical aspects, to evaluate the potential for improvement and to combat tumor-acquired resistance. A recent research focus has centered on the stimulation of immune responses to induce immunogenic cell death and the influence on the tumor microenvironment to enhance bystander effects.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
11.
Pharmaceutics ; 14(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35890260

RESUMEN

Silicone oil endotamponades provide a reservoir for drugs in the eye. Following vitrectomy surgery to treat retinal detachments, extensive diabetic retinopathy or endophthalmitis, they can be used as long-term lipophilic depots. This study aimed to investigate the physicochemical properties of intravitreally applied drugs of different lipophilicity, namely vancomycin, ceftazidime and voriconazole. For this purpose, an in vitro model of the silicone-oil-filled eye compared to porcine vitreous bodies (PVBs) was used. In a glass container, either light or heavy silicone oil or PVB was set into equilibrium with an aqueous fluid. Vancomycin, voriconazole and ceftazidime were added in concentrations commonly applied in clinical practice. The time course of the concentration of the drugs was determined in the hydrophilic phase for up to 24 h. With silicone oil present, the concentrations of vancomycin, voriconazole and ceftazidime were elevated in the aqueous humor when compared to the vitreous body (p < 0.001 for all drugs). With increasing lipophilicity, higher concentrations of the drug dissolved in silicone oil after 24 h (52.7%, 49.1% and 34.3% for vancomycin, ceftazidime and voriconazole, respectively). While no difference between lighter- and heavier-than-water silicone oil was apparent for vancomycin and ceftazidime (p = 0.17 and p = 0.72), voriconazole dissolved significantly better in the heavier-than-water silicone oil (p = 0.002). A higher-than-expected percentage of the glycopeptide vancomycin dissolved in the porcine vitreous body, possibly due to protein binding. In conclusion, silicone oils influence the drug concentration and distribution of intravitreally applied drugs depending on their lipophilicity. The addition of F6H8 used to create heavy silicone oils attenuates these effects for lipophilic drugs. Knowledge of the distribution of these intravitreally applied drugs is crucial to ensure the desired anti-infectious effect.

12.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35215272

RESUMEN

As multidrug-resistant bacteria represent a concerning burden, experts insist on the need for a dramatic rethinking on antibiotic use and development in order to avoid a post-antibiotic era. New and rapidly developable strategies for antimicrobial substances, in particular substances highly potent against multidrug-resistant bacteria, are urgently required. Some of the treatment options currently available for multidrug-resistant bacteria are considerably limited by side effects and unfavorable pharmacokinetics. The glycopeptide vancomycin is considered an antibiotic of last resort. Its use is challenged by bacterial strains exhibiting various types of resistance. Therefore, in this study, highly active polycationic peptide-vancomycin conjugates with varying linker characteristics or the addition of PEG moieties were synthesized to optimize pharmacokinetics while retaining or even increasing antimicrobial activity in comparison to vancomycin. The antimicrobial activity of the novel conjugates was determined by microdilution assays on susceptible and vancomycin-resistant bacterial strains. VAN1 and VAN2, the most promising linker-modified derivatives, were further characterized in vivo with molecular imaging and biodistribution studies in rodents, showing that the linker moiety influences both antimicrobial activity and pharmacokinetics. Encouragingly, VAN2 was able to undercut the resistance breakpoint in microdilution assays on vanB and vanC vancomycin-resistant enterococci. Out of all PEGylated derivatives, VAN:PEG1 and VAN:PEG3 were able to overcome vanC resistance. Biodistribution studies of the novel derivatives revealed significant changes in pharmacokinetics when compared with vancomycin. In conclusion, linker modification of vancomycin-polycationic peptide conjugates represents a promising strategy for the modulation of pharmacokinetic behavior while providing potent antimicrobial activity.

13.
Pharmaceutics ; 13(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34575418

RESUMEN

Sepsis is the number one cause of death in intensive care units. This life-threatening condition is caused by bacterial infections and triggered by endotoxins of Gram-negative bacteria that leads to an overreaction of the immune system. The synthetic anti-lipopolysaccharide peptide Pep19-2.5 is a promising candidate for the treatment of sepsis as it binds sepsis-inducing lipopolysaccharides and thus prevents initiation of septic shock. For clinical evaluation precise quantification of the peptide in blood and tissue is required. As the peptide is not extractable from biological samples by commonly used methods there is a need for a new analysis method that does not rely on extraction of the peptide. In order to quantify the peptide by mass spectrometry, the peptide was synthesized containing 13C9,15N1-labeled phenylalanine residues. This modification offers high stability during acidic hydrolysis. Following acidic hydrolysis of the samples, the concentration of 13C9,15N1-labeled phenylalanine determined by LC-MS could be unambiguously correlated to the content of Pep19-2.5. Further experiments validated the accuracy of the data. Moreover, the quantification of Pep19-2.5 in different tissues (as studied in Wistar rats) was shown to provide comparable results to the results obtained with radioactively-labeled (14C) Pep19-2.5- Radioactive labeling is considered as the gold standard for quantification of compounds that refrain from reliable extraction methods. This novel method represents a valuable procedure for the determination of Pep19-2.5 and sticky peptides with unpredictable extraction properties in general.

14.
EJNMMI Radiopharm Chem ; 6(1): 26, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34417894

RESUMEN

BACKGROUND: Cancer-associated fibroblasts are found in the stroma of epithelial tumors. They are characterized by overexpression of the fibroblast activation protein (FAP), a serine protease which was already proven as attractive target for chelator-based theranostics. Unfortunately, the value of gallium-68 labeled tracers is limited by their batch size and the short nuclide half-life. To overcome this drawback, radiolabeling with aluminum fluoride complexes and 6-fluoronicotinamide derivatives of the longer-lived nuclide fluorine-18 was established. The novel compounds were tested for their FAP-specific binding affinity. Uptake and binding competition were studied in vitro using FAP expressing HT-1080 cells. HEK cells transfected with the closely related dipeptidyl peptidase-4 (HEK-CD26) were used as negative control. Small animal positron emission tomography imaging and biodistribution experiments were performed in HT-1080-FAP xenografted nude mice. [18F]AlF-FAPI-74 was selected for PET/CT imaging in a non-small cell lung cancer (NSCLC) patient. RESULTS: In vitro, 18F-labeled FAPI-derivatives demonstrated high affinity (EC50 = < 1 nm to 4.2 nm) and binding of up to 80% to the FAP-expressing HT1080 cells while no binding to HEK-CD26 cells was observed. While small animal PET imaging revealed unfavorable biliary excretion of most of the 18F-labeled compounds, the NOTA bearing compounds [18F]AlF-FAPI-74 and -75 achieved good tumor-to-background ratios, as a result of their preferred renal excretion. These two compounds showed the highest tumor accumulation in PET imaging. The organ distribution values of [18F]AlF-FAPI-74 were in accordance with the small animal PET imaging results. Due to its less complex synthesis, fast clearance and low background values, [18F]AlF-FAPI-74 was chosen for clinical imaging. PET/CT of a patient with metastasized non-small cell lung cancer (NSCLC), enabled visualization of the primary tumor and its metastases at the hepatic portal and in several bones. This was accompanied by a rapid clearance from the blood pool and low background in healthy organs. CONCLUSION: [18F]AlF-labeled FAPI derivatives represent powerful tracers for PET. Owing to an excellent performance in PET imaging, FAPI-74 can be regarded as a promising precursor for [18F]AlF-based FAP-imaging.

15.
Nanomedicine (Lond) ; 16(20): 1813-1832, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34269068

RESUMEN

The number of approved macromolecular drugs such as peptides, proteins and antibodies steadily increases. Since drugs with high molecular weight are commonly not suitable for oral delivery, research on carrier strategies enabling oral administration is of vital interest. In past decades, nanocarriers, in particular liposomes, have been exhaustively investigated as oral drug-delivery platform. Despite their successful application as parenteral delivery vehicles, liposomes have up to date not succeeded for oral administration. However, a plenitude of approaches aiming to increase the oral bioavailability of macromolecular drugs administered by liposomal formulations has been published. Here, we summarize the strategies published in the last 10 years (vaccine strategies excluded) with a main focus on strategies proven efficient in animal models.


Asunto(s)
Productos Biológicos , Liposomas , Administración Oral , Animales , Disponibilidad Biológica , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos
16.
Mol Pharm ; 18(5): 2004-2014, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33844553

RESUMEN

Recently, a lipopeptide derived from the hepatitis B virus (HBV) large surface protein has been developed as an HBV entry inhibitor. This lipopeptide, called MyrcludexB (MyrB), selectively binds to the sodium taurocholate cotransporting polypeptide (NTCP) on the basolateral membrane of hepatocytes. Here, the feasibility of coupling therapeutic enzymes to MyrB was investigated for the development of enzyme delivery strategies. Hepatotropic targeting shall enable enzyme prodrug therapies and detoxification procedures. Here, horseradish peroxidase (HRP) was conjugated to MyrB via maleimide chemistry, and coupling was validated by SDS-PAGE and reversed-phase HPLC. The specificity of the target recognition of HRP-MyrB could be shown in an NTCP-overexpressing liver parenchymal cell line, as demonstrated by competitive inhibition with an excess of free MyrB and displayed a strong linear dependency on the applied HRP-MyrB concentration. In vivo studies in zebrafish embryos revealed a dominating interaction of HRP-MyrB with scavenger endothelial cells vs xenografted NTCP expressing mammalian cells. In mice, radiolabeled 125I-HRP-MyrBy, as well as the non-NTCP targeted control HRP-peptide-construct (125I-HRP-alaMyrBy) demonstrated a strong liver accumulation confirming the nonspecific interaction with scavenger cells. Still, MyrB conjugation to HRP resulted in an increased and NTCP-mediated hepatotropism, as revealed by competitive inhibition. In conclusion, the model enzyme HRP was successfully conjugated to MyrB to achieve NTCP-specific targeting in vitro with the potential for ex vivo diagnostic applications. In vivo, target specificity was reduced by non-NTCP-mediated interactions. Nonetheless, tissue distribution experiments in zebrafish embryos provide mechanistic insight into underlying scavenging processes indicating partial involvement of stabilin receptors.


Asunto(s)
Portadores de Fármacos/farmacología , Terapia Enzimática/métodos , Enzimas/administración & dosificación , Lipopéptidos/farmacología , Animales , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Portadores de Fármacos/química , Embrión no Mamífero , Enzimas/farmacocinética , Células HEK293 , Hepatocitos/metabolismo , Humanos , Lipopéptidos/química , Hígado/citología , Hígado/metabolismo , Ratones , Modelos Animales , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Profármacos/administración & dosificación , Profármacos/farmacocinética , Simportadores/metabolismo , Distribución Tisular , Pez Cebra , Proteínas de Pez Cebra/metabolismo
18.
Antibiotics (Basel) ; 9(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255900

RESUMEN

The increasing number of infections caused by multidrug-resistant bacteria requires an intensified search for new antibiotics. Pep19-4LF is a synthetic antimicrobial peptide (GKKYRRFRWKFKGKLFLFG) that was previously designed with the main focus on high antimicrobial activity. The hydrophobic motif, LFLFG, was found to be essential for antimicrobial activity. However, this motif shows several limitations such as aggregation in biological media, low solubility, and small yields in peptide synthesis. In order to obtain more appropriate peptide characteristics, the hydrophobic motif was replaced with fatty acids. For this purpose, a shortened variant of Pep19-4LF (Pep19-short; GKKYRRFRWKFKGK) was synthesized and covalently linked to saturated fatty acids of different chain lengths. The peptide conjugates were tested with respect to their antibacterial activity by microdilution experiments on different bacterial strains. The length of the fatty acid was found to be directly correlated to the antimicrobial activity up to an ideal chain length (undecanoic acid, C11:0). This conjugate showed high antimicrobial activity in absence of toxicity. Time-kill studies revealed a fast and bactericidal mode of action. Furthermore, the first in vivo experiments of the conjugate in rodents demonstrated pharmacokinetics appropriate for application as a drug. These results clearly indicate that the hydrophobic motif of the peptide can be replaced by a single fatty acid of medium length, simplifying the design of this antimicrobial peptide while retaining high antimicrobial activity in the absence of toxicity.

19.
Pharmaceuticals (Basel) ; 13(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485876

RESUMEN

Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure-activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria.

20.
J Control Release ; 322: 200-208, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32184098

RESUMEN

Monoclonal antibodies (mAbs) are increasingly exploited as vehicles for the targeted delivery of cytotoxic drugs. In antibody-drug conjugates (ADCs) antibodies specifically deliver cytotoxic compounds to cancer cells. Here, we present a technology for elevating the intracellular delivery of antibodies by the conjugation of tetrameric cell-penetrating peptides (tCPPs). The solid phase synthesis of tCPPs and their application in a chemical modification strategy for mAbs provides constructs that attain up to fourfold elevated internalization rates while retaining the mAbs target specificity. The antigen independent internalization is accompanied by beneficial pharmacokinetics limiting off-target accumulation. Applicability was proven for matuzumab, trastuzumab and the ADC Kadcyla®. Cytotoxicity studies of tCPP-conjugates of Kadcyla® resulted in a sixfold increased cytotoxicity proving the potential of chemical modification strategies to extend the applicability of biologicals. This constitutes a significant step towards next-generation antibody-based therapeutics.


Asunto(s)
Antineoplásicos , Péptidos de Penetración Celular , Inmunoconjugados , Anticuerpos Monoclonales , Ingeniería Química , Trastuzumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...