Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Astrobiology ; 20(8): 935-943, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32267726

RESUMEN

Biology experiments in space seek to increase our understanding of what happens to life beyond Earth and how we can safely send life beyond Earth. Spaceflight is associated with many (mal)adaptations in physiology, including decline in musculoskeletal, cardiovascular, vestibular, and immune systems. Biological experiments in space are inherently challenging to implement. Development of hardware and validation of experimental conditions are critical to ensure the collection of high-quality data. The model organism Caenorhabditis elegans has been studied in space for more than 20 years to better understand spaceflight-induced (patho)physiology, particularly spaceflight-induced muscle decline. These experiments have used a variety of hardware configurations. Despite this, hardware used in the past was not available for our most recent experiment, the Molecular Muscle Experiment (MME). Therefore, we had to design and validate flight hardware for MME. MME provides a contemporary example of many of the challenges faced by researchers conducting C. elegans experiments onboard the International Space Station. Here, we describe the hardware selection and validation, in addition to the ground-based experiment scientific validation testing. These experiences and operational solutions allow others to replicate and/or improve our experimental design on future missions.


Asunto(s)
Adaptación Fisiológica , Caenorhabditis elegans/fisiología , Exobiología/instrumentación , Vuelo Espacial , Ingravidez/efectos adversos , Animales , Descondicionamiento Cardiovascular , Diseño de Equipo , Exobiología/métodos , Modelos Animales , Músculos/fisiología , Simulación de Ingravidez/instrumentación , Simulación de Ingravidez/métodos
2.
J Vis Commun Med ; 43(2): 85-90, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31858847
3.
Nat Cell Biol ; 19(7): 787-798, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28604678

RESUMEN

The endosomal sorting complex required for transport (ESCRT)-III mediates membrane fission in fundamental cellular processes, including cytokinesis. ESCRT-III is thought to form persistent filaments that over time increase their curvature to constrict membranes. Unexpectedly, we found that ESCRT-III at the midbody of human cells rapidly turns over subunits with cytoplasmic pools while gradually forming larger assemblies. ESCRT-III turnover depended on the ATPase VPS4, which accumulated at the midbody simultaneously with ESCRT-III subunits, and was required for assembly of functional ESCRT-III structures. In vitro, the Vps2/Vps24 subunits of ESCRT-III formed side-by-side filaments with Snf7 and inhibited further polymerization, but the growth inhibition was alleviated by the addition of Vps4 and ATP. High-speed atomic force microscopy further revealed highly dynamic arrays of growing and shrinking ESCRT-III spirals in the presence of Vps4. Continuous ESCRT-III remodelling by subunit turnover might facilitate shape adaptions to variable membrane geometries, with broad implications for diverse cellular processes.


Asunto(s)
Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/enzimología , Membranas Intracelulares/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/ultraestructura , Células HeLa , Humanos , Membranas Intracelulares/ultraestructura , Microscopía de Fuerza Atómica , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , ATPasas de Translocación de Protón Vacuolares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...