RESUMEN
With the increasing prevalence of antimicrobial-resistant bacterial infections, there is interest in using bacteriophages (phages) to treat such infections. However, the factors that govern bacteriophage pharmacokinetics in vivo remain poorly understood. Here, we have examined the contribution of neutrophils, the most abundant phagocytes in the body, to the pharmacokinetics of i.v. administered bacteriophage in uninfected mice. A single dose of LPS-5, a bacteriophage recently used in human clinical trials to treat drug-resistant Pseudomonas aeruginosa, was administered i.v. to both immunocompetent BALB/c and neutropenic CD1 mice. Phage concentrations were assessed in peripheral blood and spleen at 0.25, 1, 2, 4, 8, 12, and 24 hours after administration by plaque assay and qPCR. We observed that the phage clearance was only minimally affected by neutropenia. Indeed, the half-lives of phages in blood in BALB/c and CD1 mice were 3.45 and 3.66 hours, respectively. These data suggest that neutrophil-mediated phagocytosis is not a major determinant of phage clearance. Conversely, we observed a substantial discrepancy in circulating phage levels over time when measured by qPCR versus plaque assay, suggesting that significant inactivation of circulating phages occurs over time. These data indicate that alternative factors, but not neutrophils, inactivate i.v. administered phages.
Asunto(s)
Ratones Endogámicos BALB C , Neutrófilos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Neutrófilos/metabolismo , Neutrófilos/inmunología , Ratones , Infecciones por Pseudomonas/terapia , Infecciones por Pseudomonas/inmunología , Neutropenia/terapia , Terapia de Fagos/métodos , Fagocitosis , Femenino , Bacteriófagos , Bazo/metabolismo , Fagos PseudomonasRESUMEN
With the increasing prevalence of antimicrobial-resistant bacterial infections, there is great interest in using lytic bacteriophages (phages) to treat such infections. However, the factors that govern bacteriophage pharmacokinetics in vivo remain poorly understood. Here, we have examined the contribution of neutrophils, the most abundant phagocytes in the body, to the pharmacokinetics of intravenously administered bacteriophage in uninfected mice. A single dose of LPS-5, an antipseudomonal bacteriophage recently used in human clinical trials, was administered intravenously to both wild-type BALB/c and neutropenic ICR mice. Phage concentrations were assessed in peripheral blood and spleen at 0.5, 1, 2, 4, 8, 12, and 24 hours after administration by plaque assay and qPCR. We observed that the phage clearance is only minimally affected by neutropenia. Indeed, the half-life of phages in blood in BALB/c and ICR mice is 3.45 and 3.66 hours, respectively. These data suggest that neutrophil-mediated phagocytosis is not a major determinant of phage clearance. Conversely, we observed a substantial discrepancy in circulating phage levels over time when measured by qPCR versus plaque assay, suggesting that substantial functional inactivation of circulating phages occurs over time. These data indicate that circulating factors, but not neutrophils, inactivate intravenously administered phages.
RESUMEN
Novel bacterial topoisomerase inhibitors (NBTIs) are the newest members of gyrase inhibitor broad-spectrum antibacterial agents, represented by the most advanced member, gepotidacin, a 4-amino-piperidine linked NBTI, which is undergoing phase III clinical trials for treatment of urinary tract infections (UTI). We have extensively reported studies on oxabicyclooctane linked NBTIs, including AM-8722. The present study summarizes structure activity relationship (SAR) of AM-8722 leading to identification of 7-fluoro-1-cyanomethyl-1,5-naphthyridin-2-one based NBTI (16, AM-8888) with improved potency and spectrum (MIC values of 0.016-4 µg/mL), with Pseudomonas aeruginosa being the least sensitive strain (MIC 4 µg/mL).
Asunto(s)
Antibacterianos , Inhibidores de Topoisomerasa , Antibacterianos/química , Antibacterianos/farmacología , Girasa de ADN/metabolismo , Topoisomerasa de ADN IV , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/metabolismo , Relación Estructura-Actividad , Tioinosina/análogos & derivados , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa/química , Inhibidores de Topoisomerasa/farmacologíaRESUMEN
Clostridioides difficile is a commensal Gram-positive gut bacterium that causes C. difficile-associated diarrhea. Currently available antibacterial therapeutic treatment options are effective except for the repeated recurrences significantly burdening the health care system and causing mortality. The development of new therapeutic modalities including new effective antibiotics with a low rate of recurrence has been unpredictive and exceedingly challenging, requiring continued profiling of many new classes of antibiotics. Nocathiacins and thiazomycins are a class of thiazolyl peptides exhibiting potent and selective broad-spectrum Gram-positive activity including activity against the anaerobe C. difficile. These compounds showed MIC values of 0.015-0.06 µg/mL against C. difficile with more than 100-200-fold selectivity versus commensurate Gram-negative Bacteroides fragilis. Nocathiacin I and one of its analogs exhibited potent in vivo efficacy in the gold-standard hamster model of C. difficile infection, providing 100% protection in this lethal model at 6.25 mg/kg orally twice daily. The efficacy was corroborated by robust reduction of cecum C. difficile burden and proportionate exposure of the compounds in the cecum contents without any systemic absorption. In this paper, details of the results of in vitro, in vivo, pharmacodynamics, and pharmacokinetic studies have been described.
Asunto(s)
Clostridioides difficile , Clostridioides , Animales , Antibacterianos/química , Antibacterianos/farmacología , Cricetinae , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos , TiazolesRESUMEN
Antifungal prophylaxis is recommended to prevent invasive fungal disease caused by Candida spp., Aspergillus spp., and Pneumocystis jirovecii in patients at risk for opportunistic infections, such as allogeneic blood or marrow transplant recipients, patients with hematological disease undergoing chemotherapy, or patients on immunosuppressive therapies. Current approaches to antifungal prophylaxis require multiple agents to cover these key fungi. Rezafungin, a novel echinocandin designed for next-generation properties (e.g., greater stability and long-acting pharmacokinetics for once-weekly dosing), has demonstrated in vitro activity against Candida and Aspergillus spp. and efficacy against Pneumocystis spp. biofilms. Rezafungin was evaluated in in vivo studies of prophylactic efficacy using immunosuppressed mouse models of invasive candidiasis, aspergillosis, and Pneumocystis pneumonia. Rezafungin reduction of Candida CFU burden was generally greater with increasing drug concentrations (5, 10, or 20 mg/kg) and when rezafungin was administered closer to the time of fungal challenge (day -1, -3, or -5). Similarly, in the aspergillosis model, survival rates increased with drug concentrations and when rezafungin was administered closer to the time of fungal challenge. Against Pneumocystismurina, rezafungin significantly reduced trophic nuclei and asci counts at all doses tested. Rezafungin prevented infection at the two higher doses compared to vehicle and had comparable activity to the active control trimethoprim-sulfamethoxazole at human equivalent doses for prevention. These findings support phase 3 development of rezafungin and the potential for single-agent prophylaxis against invasive fungal disease caused by Candida spp., Aspergillus spp., and Pneumocystis jirovecii.
Asunto(s)
Aspergilosis , Candidiasis Invasiva , Neumonía por Pneumocystis , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Candidiasis Invasiva/tratamiento farmacológico , Candidiasis Invasiva/prevención & control , Equinocandinas , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Neumonía por Pneumocystis/tratamiento farmacológico , Neumonía por Pneumocystis/prevención & controlRESUMEN
The U.S. Food and Drug Administration (FDA) hosted a public workshop entitled "Advancing Animal Models for Antibacterial Drug Development" on 5 March 2020. The workshop mainly focused on models of pneumonia caused by Pseudomonas aeruginosa and Acinetobacter baumannii The program included discussions from academic investigators, industry, and U.S. government scientists. The potential use of mouse, rabbit, and pig models for antibacterial drug development was presented and discussed.
Asunto(s)
Acinetobacter baumannii , Antibacterianos , Animales , Antibacterianos/uso terapéutico , Desarrollo de Medicamentos , Ratones , Modelos Animales , Conejos , Porcinos , Estados Unidos , United States Food and Drug AdministrationRESUMEN
Rezafungin acetate is a novel echinocandin in clinical development for prevention and treatment of invasive fungal infections. Rezafungin is differentiated by a pharmacokinetic/pharmacodynamic (PK/PD) profile that includes a long half-life allowing once-weekly administration, front-loaded plasma drug exposures associated with antifungal efficacy, and penetration into deep-seated infections, such as intra-abdominal abscesses. In this series of in vivo studies, rezafungin demonstrated efficacy in the treatment of neutropenic mouse models of disseminated candidiasis, including infection caused by azole-resistant Candida albicans, and aspergillosis. These results contribute to a growing body of evidence demonstrating the antifungal efficacy and potential utility of rezafungin in the treatment of invasive fungal infections.
Asunto(s)
Antifúngicos/farmacocinética , Aspergilosis/tratamiento farmacológico , Candidiasis Invasiva/tratamiento farmacológico , Equinocandinas/farmacocinética , Administración Oral , Animales , Antifúngicos/administración & dosificación , Aspergilosis/inmunología , Aspergilosis/microbiología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/aislamiento & purificación , Candida albicans/efectos de los fármacos , Candida albicans/aislamiento & purificación , Candidiasis Invasiva/sangre , Candidiasis Invasiva/inmunología , Candidiasis Invasiva/microbiología , Modelos Animales de Enfermedad , Esquema de Medicación , Equinocandinas/administración & dosificación , Femenino , Semivida , Humanos , Huésped Inmunocomprometido , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Neutropenia/inmunologíaRESUMEN
New drugs with novel mechanisms of resistance are desperately needed to address both community and nosocomial infections due to Gram-negative bacteria. One such potential target is LpxC, an essential enzyme that catalyzes the first committed step of lipid A biosynthesis. Achaogen conducted an extensive research campaign to discover novel LpxC inhibitors with activity against Pseudomonas aeruginosa We report here the in vitro antibacterial activity and pharmacodynamics of ACHN-975, the only molecule from these efforts and the first ever LpxC inhibitor to be evaluated in phase 1 clinical trials. In addition, we describe the profiles of three additional LpxC inhibitors that were identified as potential lead molecules. These efforts did not produce an additional development candidate with a sufficiently large therapeutic window and the program was subsequently terminated.
Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Catálisis/efectos de los fármacos , Humanos , Pseudomonas aeruginosa/metabolismoRESUMEN
CD101 is a novel echinocandin with concentration-dependent fungicidal activity in vitro and a long half-life (â¼133 h in humans, â¼70 to 80 h in mice). Given these characteristics, it is likely that the shape of the CD101 exposure (i.e., the time course of CD101 concentrations) influences efficacy. To test this hypothesis, doses which produce the same total area under the concentration-time curve (AUC) were administered to groups of neutropenic ICR mice infected with Candida albicans R303 using three different schedules. A total CD101 dose of 2 mg/kg was administered as a single intravenous (i.v.) dose or in equal divided doses of either 1 mg/kg twice weekly or 0.29 mg/kg/day over 7 days. The studies were performed using a murine disseminated candidiasis model. Animals were euthanized at 168 h following the start of treatment. Fungi grew well in the no-treatment control group and showed variable changes in fungal density in the treatment groups. When the CD101 AUC from 0 to 168 h (AUC0-168) was administered as a single dose, a >2 log10 CFU reduction from the baseline at 168 h was observed. When twice-weekly and daily regimens with similar AUC values were administered, net fungal stasis and a >1 log10 CFU increase from the baseline were observed, respectively. These data support the hypothesis that the shape of the CD101 AUC influences efficacy. Thus, CD101 administered once per week demonstrated a greater degree of fungal killing than the same dose divided into twice-weekly or daily regimens.
Asunto(s)
Antifúngicos/uso terapéutico , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Equinocandinas , Animales , Antifúngicos/administración & dosificación , Antifúngicos/farmacocinética , Modelos Animales de Enfermedad , Esquema de Medicación , Equinocandinas/administración & dosificación , Equinocandinas/farmacocinética , Equinocandinas/uso terapéutico , Humanos , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad MicrobianaRESUMEN
Oxabicyclooctane-linked novel bacterial topoisomerase inhibitors (NBTIs) represent a new class of recently described antibacterial agents with broad-spectrum activity. NBTIs dually inhibit the clinically validated bacterial targets DNA gyrase and topoisomerase IV and have been shown to bind distinctly from known classes of antibacterial agents directed against these targets. Herein we report the molecular, cellular, and in vivo characterization of AM-8722 as a representative N-alkylated-1,5-naphthyridone left-hand-side-substituted NBTI. Consistent with its mode of action, macromolecular labeling studies revealed a specific effect of AM-8722 to dose dependently inhibit bacterial DNA synthesis. AM-8722 displayed greater intrinsic enzymatic potency than levofloxacin versus both DNA gyrase and topoisomerase IV from Staphylococcus aureus and Escherichia coli and displayed selectivity against human topoisomerase II. AM-8722 was rapidly bactericidal and exhibited whole-cell activity versus a range of Gram-negative and Gram-positive organisms, with no whole-cell potency shift due to the presence of DNA or human serum. Frequency-of-resistance studies demonstrated an acceptable rate of resistance emergence in vitro at concentrations 16- to 32-fold the MIC. AM-8722 displayed acceptable pharmacokinetic properties and was shown to be efficacious in mouse models of bacterial septicemia. Overall, AM-8722 is a selective and potent NBTI that displays broad-spectrum antimicrobial activity in vitro and in vivo.
Asunto(s)
Antibacterianos/farmacología , Ciclooctanos/farmacología , Girasa de ADN/metabolismo , Topoisomerasa de ADN IV/antagonistas & inhibidores , ADN-Topoisomerasas de Tipo II/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Animales , Línea Celular , ADN Bacteriano/genética , Perros , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Ratas , Ratas Wistar , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genéticaRESUMEN
Antibiotic-resistant bacteria is a major threat to human health and is predicted to become the leading cause of death from disease by 2050. Despite the recent resurgence of research and development in the area, few antibiotics have reached the market, with most of the recently approved antibiotics corresponding to new uses for old antibiotics, or structurally similar derivatives thereof. We have recently reported an in silico approach that led to the design of an entirely new class of antibiotics for the bacteria-specific mechanosensitive ion channel of large conductance: MscL. Here, we present the preclinical development of one such antibiotic, Ramizol, a first generation antibiotic belonging to that class. We present the lack of interaction between Ramizol and other mammalian channels adding credibility to its MscL selectivity. We determine the pharmacokinetic profile in a rat model and show <0.1% of Ramizol is absorbed systemically. We show this non-systemic nature of the antibiotic translates to over 70% survival of hamsters in a Clostridium difficile colitis model. Lastly, initial in vitro data indicate that resistance to Ramizol occurs at a low frequency. In conclusion, we establish the potential of Ramizol as an effective new treatment for C. difficile associated disease.
Asunto(s)
Antibacterianos/farmacocinética , Benzoatos/farmacocinética , Infecciones por Clostridium/tratamiento farmacológico , Colitis/tratamiento farmacológico , Estilbenos/farmacocinética , Animales , Antibacterianos/administración & dosificación , Benzoatos/administración & dosificación , Clostridioides difficile/efectos de los fármacos , Colitis/microbiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Farmacorresistencia Bacteriana Múltiple , Masculino , Mesocricetus , Pruebas de Sensibilidad Microbiana , Ratas , Ratas Sprague-Dawley , Estilbenos/administración & dosificaciónRESUMEN
Oxabicyclooctane linked 1,5-naphthyridinyl-pyridoxazinones are novel broad-spectrum bacterial topoisomerase inhibitors (NBTIs) targeting bacterial DNA gyrase and topoisomerase IV at a site different than quinolones. Due to lack of cross-resistance to known antibiotics they present excellent opportunity to combat drug-resistant bacteria. A structure activity relationship of the pyridoxazinone moiety is described in this Letter. Chemical synthesis and activities of NBTIs with substitutions at C-3, C-4 and C-7 of the pyridoxazinone moiety with halogens, alkyl groups and methoxy group has been described. In addition, substitutions of the linker NH proton and its transformation into amide analogs of AM-8085 and AM-8191 have been reported. Fluoro, chloro, and methyl groups at C-3 of the pyridoxazinone moiety retained the potency and spectrum. In addition, a C-3 fluoro analog showed 4-fold better oral efficacy (ED50 3.9 mg/kg) as compared to the parent AM-8085 in a murine bacteremia model of infection of Staphylococcus aureus. Even modest polarity (e.g., methoxy) is not tolerated at C-3 of the pyridoxazinone unit. The basicity and NH group of the linker is important for the activity when CH2 is at the linker position-8. However, amides (with linker position-8 ketone) with a position-7 NH or N-methyl group retained potency and spectrum suggesting that neither basicity nor hydrogen-donor properties of the linker amide NH is essential for the activity. This would suggest likely an altered binding mode of the linker position-7,8 amide containing compounds. The amides showed highly improved hERG (functional IC50 >30 µM) profile.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Ciclooctanos/química , Evaluación Preclínica de Medicamentos/métodos , Relación Estructura-Actividad , Inhibidores de Topoisomerasa/química , Administración Oral , Animales , Antibacterianos/administración & dosificación , Técnicas de Química Sintética , Topoisomerasa de ADN IV/antagonistas & inhibidores , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/metabolismo , Compuestos Heterocíclicos con 2 Anillos/química , Compuestos Heterocíclicos con 2 Anillos/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Naftiridinas/química , Naftiridinas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Inhibidores de Topoisomerasa/farmacologíaRESUMEN
Oxabicyclooctane linked novel bacterial topoisomerase inhibitors (NBTIs) are new class of recently reported broad-spectrum antibacterial agents. They target bacterial DNA gyrase and topoisomerase IV and bind to a site different than quinolones. They show no cross-resistance to known antibiotics and provide opportunity to combat drug-resistant bacteria. A structure activity relationship of the C-2 substituted ether analogs of 1,5-naphthyridine oxabicyclooctane-linked NBTIs are described. Synthesis and antibacterial activities of a total of 63 analogs have been summarized representing alkyl, cyclo alkyl, fluoro alkyl, hydroxy alkyl, amino alkyl, and carboxyl alkyl ethers. All compounds were tested against three key strains each of Gram-positive and Gram-negative bacteria as well as for hERG binding activities. Many key compounds were also tested for the functional hERG activity. Six compounds were evaluated for efficacy in a murine bacteremia model of Staphylococcus aureus infection. Significant tolerance for the ether substitution (including polar groups such as amino and carboxyl) at C-2 was observed for S. aureus activity however the same was not true for Enterococcus faecium and Gram-negative strains. Reduced clogD generally showed reduced hERG activity and improved in vivo efficacy but was generally associated with decreased overall potency. One of the best compounds was hydroxy propyl ether (16), which mainly retained the potency, spectrum and in vivo efficacy of AM8085 associated with the decreased hERG activity and improved physical property.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Naftiridinas/química , Relación Estructura-Actividad , Animales , Antibacterianos/síntesis química , Antibacterianos/farmacocinética , Técnicas de Química Sintética , Ciclooctanos/química , Girasa de ADN/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Canal de Potasio ERG1 , Enterococcus faecium/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/metabolismo , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Ratas Sprague-Dawley , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacologíaRESUMEN
Novel bacterial topoisomerase inhibitors (NBTIs) are a new class of broad-spectrum antibacterial agents targeting bacterial Gyrase A and ParC and have potential utility in combating antibiotic resistance. (R)-Hydroxy-1,5-naphthyridinone left-hand side (LHS) oxabicyclooctane linked pyridoxazinone right-hand side (RHS) containing NBTIs showed a potent Gram-positive antibacterial profile. SAR around the RHS moiety, including substitutions around pyridooxazinone, pyridodioxane, and phenyl propenoids has been described. A fluoro substituted pyridoxazinone showed an MIC against Staphylococcus aureus of 0.5 µg/mL with reduced functional hERG activity (IC50 333 µM) and good in vivo efficacy [ED90 12 mg/kg, intravenous (iv) and 15 mg/kg, oral (p.o.)]. A pyridodioxane-containing NBTI showed a S. aureus MIC of 0.5 µg/mL, significantly improved hERG IC50 764 µM and strong efficacy of 11 mg/kg (iv) and 5 mg/kg (p.o.). A phenyl propenoid series of compounds showed potent antibacterial activity, but also showed potent hERG binding activity. Many of the compounds in the hydroxy-tricyclic series showed strong activity against Acinetobacter baumannii, but reduced activity against Escherichia coli and Pseudomonas aeruginosa. Bicyclic heterocycles appeared to be the best RHS moiety for the hydroxy-tricyclic oxabicyclooctane linked NBTIs.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Naftiridinas/química , Inhibidores de Topoisomerasa/química , Inhibidores de Topoisomerasa/farmacología , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/síntesis química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Girasa de ADN/química , Girasa de ADN/metabolismo , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Oxazoles/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Inhibidores de Topoisomerasa/síntesis químicaRESUMEN
Bacterial resistance is rapidly growing, necessitating the need to discover new agents. Novel bacterial topoisomerase inhibitors (NBTIs) are new class of broad-spectrum antibacterial agents targeting bacterial DNA gyrase and topoisomerase IV. This class of inhibitors binds to an alternative binding site relative to fluoroquinolones and shows no cross-resistance to quinolones. NBTIs consist of three structural motifs. A structure activity relationship of the left hand motif 1,5-naphthyridine of oxabicyclooctane-linked NBTIs is described. Fifty five compounds were evaluated against a panel of key Gram-positive and Gram-negative strains of bacteria, as well as for hERG activity and five compounds were tested for in vivo efficacy in murine model of Staphylococcus aureus infection. These studies suggest that only a narrow range (activating and deactivating) of substitutions at C-2 and C-7 are tolerated for optimal antibacterial activity and spectrum. An alkoxy (methoxy) and CN at C-2, and a halogen and hydroxyl at C-7, appeared to be preferred in this series. Substitutions on the other three carbons generally have detrimental effect on the activity. No clear hERG activity SAR emerged from these substitutions.
Asunto(s)
ADN-Topoisomerasas/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Inhibidores de Topoisomerasa/química , Inhibidores de Topoisomerasa/farmacología , Animales , Ratones , Estructura Molecular , Infecciones Estafilocócicas/microbiología , Relación Estructura-ActividadRESUMEN
Novel bacterial topoisomerase inhibitors (NBTIs) represent a new class of broad-spectrum antibacterial agents targeting bacterial Gyrase A and ParC and have potential utility in combating antibiotic resistance. A series of novel oxabicyclooctane-linked NBTIs with new tricyclic-1,5-naphthyridinone left hand side moieties have been described. Compounds with a (R)-hydroxy-1,5-naphthyridinone moiety (7) showed potent antibacterial activity (e.g., Staphylococcus aureus MIC 0.25 µg/mL), acceptable Gram-positive and Gram-negative spectrum with rapidly bactericidal activity. The compound 7 showed intravenous and oral efficacy (ED50) at 3.2 and 27 mg/kg doses, respectively, in a murine model of bacteremia. Most importantly they showed significant attenuation of functional hERG activity (IC50 >170 µM). In general, lower logD attenuated hERG activity but also reduced Gram-negative activity. The co-crystal structure of a hydroxy-tricyclic NBTI bound to a DNA-gyrase complex exhibited a binding mode that show enantiomeric preference for R isomer and explains the activity and SAR. The discovery, synthesis, SAR and X-ray crystal structure of the left-hand-side tricyclic 1,5-naphthyridinone based oxabicyclooctane linked NBTIs are described.
Asunto(s)
Antibacterianos/farmacología , Ciclooctanos/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Naftiridinas/farmacología , Inhibidores de Topoisomerasa II/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Ciclooctanos/síntesis química , Ciclooctanos/química , Relación Dosis-Respuesta a Droga , Bacterias Gramnegativas/enzimología , Bacterias Grampositivas/enzimología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Naftiridinas/síntesis química , Naftiridinas/química , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/químicaRESUMEN
Bacterial resistance is eroding the clinical utility of existing antibiotics necessitating the discovery of new agents. Bacterial type II topoisomerase is a clinically validated, highly effective, and proven drug target. This target is amenable to inhibition by diverse classes of inhibitors with alternative and distinct binding sites to quinolone antibiotics, thus enabling the development of agents that lack cross-resistance to quinolones. Described here are novel bacterial topoisomerase inhibitors (NBTIs), which are a new class of gyrase and topo IV inhibitors and consist of three distinct structural moieties. The substitution of the linker moiety led to discovery of potent broad-spectrum NBTIs with reduced off-target activity (hERG IC50 > 18 µM) and improved physical properties. AM8191 is bactericidal and selectively inhibits DNA synthesis and Staphylococcus aureus gyrase (IC50 = 1.02 µM) and topo IV (IC50 = 10.4 µM). AM8191 showed parenteral and oral efficacy (ED50) at less than 2.5 mg/kg doses in a S. aureus murine infection model. A cocrystal structure of AM8191 bound to S. aureus DNA-gyrase showed binding interactions similar to that reported for GSK299423, displaying a key contact of Asp83 with the basic amine at position-7 of the linker.
RESUMEN
Clostridium difficile is the causative agent of C. difficile-associated diarrhea (CDAD), with increased risk in elderly populations. Kibdelomycin, a novel natural-product inhibitor of type II topoisomerase enzymes, was evaluated for activity against C. difficile and gastrointestinal anaerobic organisms. Toxigenic C. difficile isolates (n=168) from U.S. hospitals and anaerobic Gram-positive and Gram-negative organisms (n=598) from Chicago-area hospitals were tested. Kibdelomycin showed potent activity against toxigenic C. difficile (MIC90=0.25 µg/ml) and most Gram-positive aerobic organisms but had little activity against Bacteroides species (MIC50>32 µg/ml; n=270). Potent anti-C. difficile activity was also observed in the hamster model of C. difficile colitis. Dosing at 1.6 mg/kg (twice-daily oral dose) resulted in protection from a lethal infection and a 2-log reduction in C. difficile cecal counts. A 6.25-mg/kg twice-daily oral dose completely eliminated detectable C. difficile counts in cecal contents. A single 6.25-mg/kg oral dose showed that cecal contents were exposed to the drug at >2 µM (eightfold higher than the MIC), with no significant plasma exposure. These findings support further exploration of kibdelomycin for development of an anti-C. difficile agent.
Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/tratamiento farmacológico , Animales , Antibacterianos/farmacocinética , Cricetinae , Masculino , Ratones , Pruebas de Sensibilidad MicrobianaRESUMEN
The emergence of antibiotic-resistant strains of pathogenic bacteria is an increasing threat to global health that underscores an urgent need for an expanded antibacterial armamentarium. Gram-negative bacteria, such as Escherichia coli, have become increasingly important clinical pathogens with limited treatment options. This is due in part to their lipopolysaccharide (LPS) outer membrane components, which dually serve as endotoxins while also protecting Gram-negative bacteria from antibiotic entry. The LpxC enzyme catalyzes the committed step of LPS biosynthesis, making LpxC a promising target for new antibacterials. Here, we present the first structure of an LpxC enzyme in complex with the deacetylation reaction product, UDP-(3-O-(R-3-hydroxymyristoyl))-glucosamine. These studies provide valuable insight into recognition of substrates and products by LpxC and a platform for structure-guided drug discovery of broad spectrum Gram-negative antibiotics.
Asunto(s)
Amidohidrolasas/química , Escherichia coli/enzimología , Ácidos Mirísticos/química , Protones , Uridina Difosfato N-Acetilglucosamina/análogos & derivados , Amidohidrolasas/metabolismo , Cristalografía por Rayos X , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/química , Ácidos Mirísticos/metabolismo , Estructura Terciaria de Proteína , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismoRESUMEN
The resistance of methicillin-resistant Staphylococcus aureus (MRSA) to all ß-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of ß-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem both in vitro and in vivo with potent efficacy. The in vitro activity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to ß-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with ß-lactams by preventing the signal peptidase-mediated secretion of proteins required for ß-lactam resistance. Combinations of SpsB inhibitors and ß-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to ß-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections.