Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2770, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179392

RESUMEN

Perceptual decisions are complete when a continuously updated score of sensory evidence reaches a threshold. In Drosophila, αß core Kenyon cells (αßc KCs) of the mushroom bodies integrate odor-evoked synaptic inputs to spike threshold at rates that parallel the speed of olfactory choices. Here we perform a causal test of the idea that the biophysical process of synaptic integration underlies the psychophysical process of bounded evidence accumulation in this system. Injections of single brief, EPSP-like depolarizations into the dendrites of αßc KCs during odor discrimination, using closed-loop control of a targeted opsin, accelerate decision times at a marginal cost of accuracy. Model comparisons favor a mechanism of temporal integration over extrema detection and suggest that the optogenetically evoked quanta are added to a growing total of sensory evidence, effectively lowering the decision bound. The subthreshold voltage dynamics of αßc KCs thus form an accumulator memory for sequential samples of information.


Asunto(s)
Odorantes , Olfato , Animales , Olfato/fisiología , Drosophila/fisiología , Cuerpos Pedunculados/fisiología
2.
Curr Biol ; 31(22): 4911-4922.e4, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34610272

RESUMEN

The mushroom bodies of Drosophila contain circuitry compatible with race models of perceptual choice. When flies discriminate odor intensity differences, opponent pools of αß core Kenyon cells (on and off αßc KCs) accumulate evidence for increases or decreases in odor concentration. These sensory neurons and "antineurons" connect to a layer of mushroom body output neurons (MBONs) which bias behavioral intent in opposite ways. All-to-all connectivity between the competing integrators and their MBON partners allows for correct and erroneous decisions; dopaminergic reinforcement sets choice probabilities via reciprocal changes to the efficacies of on and off KC synapses; and pooled inhibition between αßc KCs can establish equivalence with the drift-diffusion formalism known to describe behavioral performance. The response competition network gives tangible form to many features envisioned in theoretical models of mammalian decision making, but it differs from these models in one respect: the principal variables-the fill levels of the integrators and the strength of inhibition between them-are represented by graded potentials rather than spikes. In pursuit of similar computational goals, a small brain may thus prioritize the large information capacity of analog signals over the robustness and temporal processing span of pulsatile codes.


Asunto(s)
Cuerpos Pedunculados , Neuronas , Animales , Drosophila/fisiología , Drosophila melanogaster/fisiología , Mamíferos , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Odorantes , Olfato/fisiología , Sinapsis/fisiología
3.
J Neurosci ; 41(14): 3054-3067, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33608385

RESUMEN

Homeostatic matching of pre- and postsynaptic function has been observed in many species and neural structures, but whether transcriptional changes contribute to this form of trans-synaptic coordination remains unknown. To identify genes whose expression is altered in presynaptic neurons as a result of perturbing postsynaptic excitability, we applied a transcriptomics-friendly, temperature-inducible Kir2.1-based activity clamp at the first synaptic relay of the Drosophila olfactory system, a central synapse known to exhibit trans-synaptic homeostatic matching. Twelve hours after adult-onset suppression of activity in postsynaptic antennal lobe projection neurons of males and females, we detected changes in the expression of many genes in the third antennal segment, which houses the somata of presynaptic olfactory receptor neurons. These changes affected genes with roles in synaptic vesicle release and synaptic remodeling, including several implicated in homeostatic plasticity at the neuromuscular junction. At 48 h and beyond, the transcriptional landscape tilted toward protein synthesis, folding, and degradation; energy metabolism; and cellular stress defenses, indicating that the system had been pushed to its homeostatic limits. Our analysis suggests that similar homeostatic machinery operates at peripheral and central synapses and identifies many of its components. The presynaptic transcriptional response to genetically targeted postsynaptic perturbations could be exploited for the construction of novel connectivity tracing tools.SIGNIFICANCE STATEMENT Homeostatic feedback mechanisms adjust intrinsic and synaptic properties of neurons to keep their average activity levels constant. We show that, at a central synapse in the fruit fly brain, these mechanisms include changes in presynaptic gene expression that are instructed by an abrupt loss of postsynaptic excitability. The trans-synaptically regulated genes have roles in synaptic vesicle release and synapse remodeling; protein synthesis, folding, and degradation; and energy metabolism. Our study establishes a role for transcriptional changes in homeostatic synaptic plasticity, points to mechanistic commonalities between peripheral and central synapses, and potentially opens new opportunities for the development of connectivity-based gene expression systems.


Asunto(s)
Homeostasis/fisiología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/metabolismo , Sinapsis/genética , Sinapsis/metabolismo , Animales , Animales Modificados Genéticamente , Antenas de Artrópodos/inervación , Antenas de Artrópodos/metabolismo , Drosophila , Femenino , Expresión Génica
4.
Nature ; 568(7751): 230-234, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30894743

RESUMEN

The essential but enigmatic functions of sleep1,2 must be reflected in molecular changes sensed by the brain's sleep-control systems. In the fruitfly Drosophila, about two dozen sleep-inducing neurons3 with projections to the dorsal fan-shaped body (dFB) adjust their electrical output to sleep need4, via the antagonistic regulation of two potassium conductances: the leak channel Sandman imposes silence during waking, whereas increased A-type currents through Shaker support tonic firing during sleep5. Here we show that oxidative byproducts of mitochondrial electron transport6,7 regulate the activity of dFB neurons through a nicotinamide adenine dinucleotide phosphate (NADPH) cofactor bound to the oxidoreductase domain8,9 of Shaker's KVß subunit, Hyperkinetic10,11. Sleep loss elevates mitochondrial reactive oxygen species in dFB neurons, which register this rise by converting Hyperkinetic to the NADP+-bound form. The oxidation of the cofactor slows the inactivation of the A-type current and boosts the frequency of action potentials, thereby promoting sleep. Energy metabolism, oxidative stress, and sleep-three processes implicated independently in lifespan, ageing, and degenerative disease6,12-14-are thus mechanistically connected. KVß substrates8,15,16 or inhibitors that alter the ratio of bound NADPH to NADP+ (and hence the record of sleep debt or waking time) represent prototypes of potential sleep-regulatory drugs.


Asunto(s)
Drosophila melanogaster/fisiología , Mitocondrias/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Subunidades de Proteína/metabolismo , Sueño/fisiología , Potenciales de Acción , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Transporte de Electrón , Metabolismo Energético , Femenino , Proteínas Luminiscentes/metabolismo , NADP/metabolismo , Neuronas/metabolismo , Optogenética , Oxidación-Reducción , Estrés Oxidativo , Oxidorreductasas/metabolismo , Subunidades de Proteína/química , Especies Reactivas de Oxígeno , Proteínas Recombinantes de Fusión/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Fármacos Inductores del Sueño , Factores de Tiempo
5.
Annu Rev Biophys ; 48: 209-229, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30786228

RESUMEN

All an animal can do to infer the state of its environment is to observe the sensory-evoked activity of its own neurons. These inferences about the presence, quality, or similarity of objects are probabilistic and inform behavioral decisions that are often made in close to real time. Neural systems employ several strategies to facilitate sensory discrimination: Biophysical mechanisms separate the neuronal response distributions in coding space, compress their variances, and combine information from sequential observations. We review how these strategies are implemented in the olfactory system of the fruit fly. The emerging principles of odor discrimination likely apply to other neural circuits of similar architecture.


Asunto(s)
Percepción Olfatoria , Olfato , Animales , Drosophila , Humanos , Neuronas , Solución de Problemas
6.
Cell ; 173(4): 894-905.e13, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706545

RESUMEN

Perceptual decisions require the accumulation of sensory information to a response criterion. Most accounts of how the brain performs this process of temporal integration have focused on evolving patterns of spiking activity. We report that subthreshold changes in membrane voltage can represent accumulating evidence before a choice. αß core Kenyon cells (αßc KCs) in the mushroom bodies of fruit flies integrate odor-evoked synaptic inputs to action potential threshold at timescales matching the speed of olfactory discrimination. The forkhead box P transcription factor (FoxP) sets neuronal integration and behavioral decision times by controlling the abundance of the voltage-gated potassium channel Shal (KV4) in αßc KC dendrites. αßc KCs thus tailor, through a particular constellation of biophysical properties, the generic process of synaptic integration to the demands of sequential sampling.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Bario/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Ciclohexanoles/farmacología , Proteínas de Drosophila/genética , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Masculino , Neuronas/citología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Receptores Odorantes/metabolismo , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Olfato , Sinapsis/metabolismo
7.
Neuron ; 97(2): 378-389.e4, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29307711

RESUMEN

Sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila are integral to sleep homeostasis, but how these cells impose sleep on the organism is unknown. We report that dFB neurons communicate via inhibitory transmitters, including allatostatin-A (AstA), with interneurons connecting the superior arch with the ellipsoid body of the central complex. These "helicon cells" express the galanin receptor homolog AstA-R1, respond to visual input, gate locomotion, and are inhibited by AstA, suggesting that dFB neurons promote rest by suppressing visually guided movement. Sleep changes caused by enhanced or diminished allatostatinergic transmission from dFB neurons and by inhibition or optogenetic stimulation of helicon cells support this notion. Helicon cells provide excitation to R2 neurons of the ellipsoid body, whose activity-dependent plasticity signals rising sleep pressure to the dFB. By virtue of this autoregulatory loop, dFB-mediated inhibition interrupts processes that incur a sleep debt, allowing restorative sleep to rebalance the books. VIDEO ABSTRACT.


Asunto(s)
Drosophila melanogaster/fisiología , Interneuronas/fisiología , Sueño/fisiología , Animales , Encéfalo/fisiología , Ritmo Circadiano , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Homeostasis , Hormonas de Insectos/fisiología , Luz , Locomoción/efectos de la radiación , Masculino , Potenciales de la Membrana , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Optogenética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Visión Ocular
8.
Elife ; 62017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28267430

RESUMEN

Ion channel models are the building blocks of computational neuron models. Their biological fidelity is therefore crucial for the interpretation of simulations. However, the number of published models, and the lack of standardization, make the comparison of ion channel models with one another and with experimental data difficult. Here, we present a framework for the automated large-scale classification of ion channel models. Using annotated metadata and responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and calcium-gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy (ICGenealogy) web interface provides an interactive resource for the categorization of new and existing models and experimental recordings. It enables quantitative comparisons of simulated and/or measured ion channel kinetics, and facilitates field-wide standardization of experimentally-constrained modeling.


Asunto(s)
Biología Computacional/métodos , Canales Iónicos/clasificación , Canales Iónicos/metabolismo , Neuronas/química , Neuronas/fisiología , Bases de Datos Factuales , Modelos Neurológicos
9.
Annu Rev Genet ; 50: 571-594, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27732792

RESUMEN

Genetically encoded tools for visualizing and manipulating neurons in vivo have led to significant advances in neuroscience, in large part because of the ability to target expression to specific cell populations of interest. Current methods enable targeting based on marker gene expression, development, anatomical projection pattern, synaptic connectivity, and recent activity as well as combinations of these factors. Here, we review these methods, focusing on issues of practical implementation as well as areas for future improvement.


Asunto(s)
Técnicas Genéticas , Neuronas/fisiología , Neurociencias/métodos , Animales , Animales Modificados Genéticamente , Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Regiones Promotoras Genéticas , Transgenes
10.
Nature ; 536(7616): 333-337, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27487216

RESUMEN

Sleep disconnects animals from the external world, at considerable risks and costs that must be offset by a vital benefit. Insight into this mysterious benefit will come from understanding sleep homeostasis: to monitor sleep need, an internal bookkeeper must track physiological changes that are linked to the core function of sleep. In Drosophila, a crucial component of the machinery for sleep homeostasis is a cluster of neurons innervating the dorsal fan-shaped body (dFB) of the central complex. Artificial activation of these cells induces sleep, whereas reductions in excitability cause insomnia. dFB neurons in sleep-deprived flies tend to be electrically active, with high input resistances and long membrane time constants, while neurons in rested flies tend to be electrically silent. Correlative evidence thus supports the simple view that homeostatic sleep control works by switching sleep-promoting neurons between active and quiescent states. Here we demonstrate state switching by dFB neurons, identify dopamine as a neuromodulator that operates the switch, and delineate the switching mechanism. Arousing dopamine caused transient hyperpolarization of dFB neurons within tens of milliseconds and lasting excitability suppression within minutes. Both effects were transduced by Dop1R2 receptors and mediated by potassium conductances. The switch to electrical silence involved the downregulation of voltage-gated A-type currents carried by Shaker and Shab, and the upregulation of voltage-independent leak currents through a two-pore-domain potassium channel that we term Sandman. Sandman is encoded by the CG8713 gene and translocates to the plasma membrane in response to dopamine. dFB-restricted interference with the expression of Shaker or Sandman decreased or increased sleep, respectively, by slowing the repetitive discharge of dFB neurons in the ON state or blocking their entry into the OFF state. Biophysical changes in a small population of neurons are thus linked to the control of sleep-wake state.


Asunto(s)
Drosophila melanogaster/fisiología , Homeostasis , Sueño/fisiología , Animales , Membrana Celular/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Conductividad Eléctrica , Femenino , Masculino , Neurotransmisores/metabolismo , Optogenética , Potasio/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Transporte de Proteínas , Receptores Dopaminérgicos/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Privación de Sueño , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Factores de Tiempo , Vigilia/fisiología
11.
Nat Commun ; 7: 10584, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26843463

RESUMEN

GABAergic interneurons play key roles in cortical circuits, yet little is known about their early connectivity. Here we use glutamate uncaging and a novel optogenetic strategy to track changes in the afferent and efferent synaptic connections of developing neocortical interneuron subtypes. We find that Nkx2-1-derived interneurons possess functional synaptic connections before emerging pyramidal cell networks. Subsequent interneuron circuit maturation is both subtype and layer dependent. Glutamatergic input onto fast spiking (FS), but not somatostatin-positive, non-FS interneurons increases over development. Interneurons of both subtype located in layers (L) 4 and 5b engage in transient circuits that disappear after the somatosensory critical period. These include a pathway mediated by L5b somatostatin-positive interneurons that specifically targets L4 during the first postnatal week. The innervation patterns of immature cortical interneuron circuits are thus neither static nor progressively strengthened but follow a layer-specific choreography of transient connections that differ from those of the adult brain.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Neocórtex/crecimiento & desarrollo , Red Nerviosa/crecimiento & desarrollo , Sinapsis , Animales , Animales Recién Nacidos , Análisis por Conglomerados , Proteínas Fluorescentes Verdes , Inmunohistoquímica , Ratones , Proteínas Nucleares , Optogenética , Técnicas de Placa-Clamp , Análisis de Componente Principal , Células Piramidales , Factor Nuclear Tiroideo 1 , Factores de Transcripción
13.
Science ; 344(6186): 901-4, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24855268

RESUMEN

Decisions take time if information gradually accumulates to a response threshold, but the neural mechanisms of integration and thresholding are unknown. We characterized a decision process in Drosophila that bears the behavioral signature of evidence accumulation. As stimulus contrast in trained odor discriminations decreased, reaction times increased and perceptual accuracy declined, in quantitative agreement with a drift-diffusion model. FoxP mutants took longer than wild-type flies to form decisions of similar or reduced accuracy, especially in difficult, low-contrast tasks. RNA interference with FoxP expression in αß core Kenyon cells, or the overexpression of a potassium conductance in these neurons, recapitulated the FoxP mutant phenotype. A mushroom body subdomain whose development or function require the transcription factor FoxP thus supports the progression of a decision toward commitment.


Asunto(s)
Conducta Animal , Toma de Decisiones , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Factores de Transcripción Forkhead/fisiología , Desempeño Psicomotor , Tiempo de Reacción/fisiología , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factores de Transcripción Forkhead/genética , Cuerpos Pedunculados/crecimiento & desarrollo , Cuerpos Pedunculados/metabolismo , Mutación , Neuronas/fisiología , Odorantes , Interferencia de ARN , Tiempo de Reacción/genética , Olfato
14.
PLoS Biol ; 12(2): e1001798, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586113

RESUMEN

Although neocortical connectivity is remarkably stereotyped, the abundance of some wiring motifs varies greatly between cortical areas. To examine if regional wiring differences represent functional adaptations, we have used optogenetic raster stimulation to map the laminar distribution of GABAergic interneurons providing inhibition to pyramidal cells in layer 2/3 (L2/3) of adult mouse barrel cortex during sensory deprivation and recovery. Whisker trimming caused large, motif-specific changes in inhibitory synaptic connectivity: ascending inhibition from deep layers 4 and 5 was attenuated to 20%-45% of baseline, whereas inhibition from superficial layers remained stable (L2/3) or increased moderately (L1). The principal mechanism of deprivation-induced plasticity was motif-specific changes in inhibitory-to-excitatory connection probabilities; the strengths of extant connections were left unaltered. Whisker regrowth restored the original balance of inhibition from deep and superficial layers. Targeted, reversible modifications of specific inhibitory wiring motifs thus contribute to the adaptive remodeling of cortical circuits.


Asunto(s)
Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Neocórtex/citología , Plasticidad Neuronal , Adaptación Fisiológica , Animales , Channelrhodopsins , Técnicas In Vitro , Ratones Endogámicos C57BL , Ratones Transgénicos , Neocórtex/fisiología , Red Nerviosa , Especificidad de Órganos , Privación Sensorial , Sinapsis/fisiología , Percepción del Tacto , Vibrisas/inervación
15.
Neuron ; 81(4): 860-72, 2014 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-24559676

RESUMEN

Sleep is under homeostatic control, but the mechanisms that sense sleep need and correct sleep deficits remain unknown. Here, we report that sleep-promoting neurons with projections to the dorsal fan-shaped body (FB) form the output arm of Drosophila's sleep homeostat. Homeostatic sleep control requires the Rho-GTPase-activating protein encoded by the crossveinless-c (cv-c) gene in order to transduce sleep pressure into increased electrical excitability of dorsal FB neurons. cv-c mutants exhibit decreased sleep time, diminished sleep rebound, and memory deficits comparable to those after sleep loss. Targeted ablation and rescue of Cv-c in sleep-control neurons of the dorsal FB impair and restore, respectively, normal sleep patterns. Sleep deprivation increases the excitability of dorsal FB neurons, but this homeostatic adjustment is disrupted in short-sleeping cv-c mutants. Sleep pressure thus shifts the input-output function of sleep-promoting neurons toward heightened activity by modulating ion channel function in a mechanism dependent on Cv-c.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas Activadoras de GTPasa/genética , Homeostasis/fisiología , Mutación/genética , Neuronas/metabolismo , Sueño/genética , Animales , Proteínas Activadoras de GTPasa/metabolismo , Privación de Sueño/genética , Privación de Sueño/metabolismo
16.
Nat Neurosci ; 17(4): 559-68, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24561998

RESUMEN

Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell-APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories.


Asunto(s)
Aprendizaje/fisiología , Cuerpos Pedunculados/fisiología , Percepción Olfatoria/fisiología , Regulación hacia Arriba/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Discriminación en Psicología/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Retroalimentación Fisiológica/fisiología , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Cuerpos Pedunculados/citología , Inhibición Neural/fisiología , Odorantes
17.
Neuron ; 81(6): 1442, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-28898631
18.
Neuron ; 79(5): 932-44, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24012006

RESUMEN

Taking advantage of the well-characterized olfactory system of Drosophila, we derive a simple quantitative relationship between patterns of odorant receptor activation, the resulting internal representations of odors, and odor discrimination. Second-order excitatory and inhibitory projection neurons (ePNs and iPNs) convey olfactory information to the lateral horn, a brain region implicated in innate odor-driven behaviors. We show that the distance between ePN activity patterns is the main determinant of a fly's spontaneous discrimination behavior. Manipulations that silence subsets of ePNs have graded behavioral consequences, and effect sizes are predicted by changes in ePN distances. ePN distances predict only innate, not learned, behavior because the latter engages the mushroom body, which enables differentiated responses to even very similar odors. Inhibition from iPNs, which scales with olfactory stimulus strength, enhances innate discrimination of closely related odors, by imposing a high-pass filter on transmitter release from ePN terminals that increases the distance between odor representations.


Asunto(s)
Encéfalo/fisiología , Discriminación en Psicología/fisiología , Neuronas Receptoras Olfatorias/fisiología , Transducción de Señal/fisiología , Olfato/fisiología , Animales , Drosophila , Cuerpos Pedunculados/fisiología , Odorantes , Vías Olfatorias/fisiología
19.
Cold Spring Harb Protoc ; 2012(2): 213-7, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22301651

RESUMEN

pHluorins are pH-sensitive mutants of green fluorescent protein (GFP). Attached to proteins with defined cellular locations or itineraries, pHluorins report subcellular pH as well as protein transport between compartments of differing pH. Key applications in neurobiology include the optical detection of neurotransmitter release with synapto-pHluorins and their derivatives, as well as measurements of neurotransmitter receptor trafficking. This article describes the properties and uses of synapto-pHluorins, as well as their advantages and limitations.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Coloración y Etiquetado/métodos , Transmisión Sináptica/fisiología , Genes Reporteros , Proteínas Fluorescentes Verdes/química , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...