Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8014, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580729

RESUMEN

Extreme atmospheric-marine events, known as medicanes (short for "Mediterranean hurricanes"), have affected the Mediterranean basin in recent years, resulting in extensive coastal flooding and storm surges, and have occasionally been responsible for several casualties. Considering that the development mechanism of these events is similar to tropical cyclones, it is plausible that these phenomena are strongly affected by sea surface temperatures (SSTs) during their development period (winter and autumn seasons). In this study, we compared satellite data and the numerical reanalysis of SSTs from 1969 to 2023 with in situ data from dataloggers installed at different depths off the coast of southeastern Sicily as well as from data available on Argo floats on the Mediterranean basin. A spectral analysis was performed using a continuous wavelet transform (CWT) for each SST time series to highlight the changes in SSTs prior to the occurrence of Mediterranean Hurricanes as well as the energy content of the various frequencies of the SST signal. The results revealed that decreases in SST occurred prior to the formation of each Mediterranean hurricane, and that this thermal drop phenomenon was not observed in intense extra-tropical systems. The spectral analyses revealed that high CWT coefficients representing high SST energy contents were observed before the occurrence of a Mediterranean hurricane. This information may provide a useful fingerprint for distinguishing Mediterranean hurricanes from common seasonal storms at the onset of these events.

2.
Sci Rep ; 11(1): 9388, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931687

RESUMEN

On the morning of September 26, 2007, a heavy precipitation event (HPE) affected the Venice lagoon and the neighbouring coastal zone of the Adriatic Sea, with 6-h accumulated rainfall summing up to about 360 mm in the area between the Venetian mainland, Padua and Chioggia. The event was triggered and maintained by the uplift over a convergence line between northeasterly flow from the Alps and southeasterly winds from the Adriatic Sea. Hindcast modelling experiments, using standalone atmospheric models, failed to capture the spatial distribution, maximum intensity and timing of the HPE. Here we analyze the event by means of an atmosphere-wave-ocean coupled numerical approach. The combined use of convection permitting models with grid spacing of 1 km, high-resolution sea surface temperature (SST) fields, and the consistent treatment of marine boundary layer fluxes in all the numerical model components are crucial to provide a realistic simulation of the event. Inaccurate representations of the SST affect the wind magnitude and, through this, the intensity, location and time evolution of the convergence zone, thus affecting the HPE prediction.

3.
Sci Rep ; 7(1): 12828, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28993699

RESUMEN

Extreme events represent a topic of paramount importance and a challenge for modelling investigations. Due to the need of high-resolution models, the study of severe localized convective phenomena is even more critical, especially in relation to changes in forcing factors, such as sea surface temperatures (SSTs), in future climate scenarios. Here, we analyze the effect of changes in SSTs on the intensity of a tornadic supercell in the Mediterranean through modelling investigations. We show dramatic (nonlinear) changes for updraft helicity and vertical velocity, which measure the intensity of the supercell, even for variations of SST only of + /-1 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...