Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32226833

RESUMEN

OBJECTIVES: The study aimed to assess the suitability of deformable image registration (DIR) software to generate synthetic CT (sCT) scans for dose verification during radiotherapy to the head and neck. Planning and synthetic CT dose volume histograms were compared to evaluate dosimetric changes during the treatment course. METHODS: Eligible patients had locally advanced (stage III, IVa and IVb) oropharyngeal cancer treated with primary radiotherapy. Weekly CBCT images were acquired post treatment at fractions 1, 6, 11, 16, 21 and 26 over a 30 fraction treatment course. Each CBCT was deformed with the planning CT to generate a sCT which was used to calculate the dose at that point in the treatment. A repeat planning CT2 was acquired at fraction 16 and deformed with the fraction 16 CBCT to compare differences between the calculations mid-treatment. RESULTS: 20 patients were evaluated generating 138 synthetic CT sets. The single fraction mean dose to PTV_HR between the synthetic and planning CT did not vary, although dose to 95% of PTV_HR was smaller at week 6 compared to planning (difference 2.0%, 95% CI (0.8 to 3.1), p = 0.0). There was no statistically significant difference in PRV_brainstem or PRV_spinal cord maximum dose, although greater variation using the sCT calculations was reported. The mean dose to structures based on the fraction 16 sCT and CT2 scans were similar. CONCLUSIONS: Synthetic CT provides comparable dose calculations to those of a repeat planning CT; however the limitations of DIR must be understood before it is applied within the clinical setting.

2.
Radiat Oncol ; 13(1): 229, 2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470254

RESUMEN

BACKGROUND: A new strategy is introduced combining the use of Multi-Criteria Optimization-based Trade-Off Exploration (TO) and RapidPlan™ (RP) for the selection of optimisation parameters that improve the trade-off between sparing of organs at risk (OAR) and target coverage for head and neck radiotherapy planning. Using both approaches simultaneously; three different workflows were proposed for the optimisation process of volumetric-modulated arc therapy (VMAT) plans. The generated plans were compared to the clinical plans and the plans that resulted using RP and TO individually. METHODS: Twenty clinical VMAT plans previously administered were selected. Five additional plans were created for each patient: a clinical plan further optimised with TO (Clin+TO); two plans generated by in-house built RP models, RP_1 with the model built with VMAT clinical plans and RP_TO with the model built with VMAT plans optimised by TO. Finally, these last two plans were additionally optimised with TO for the creation of the plans RP_1 + TO and RP_TO+ respectively. The TO management was standardised to maximise the sparing of the parotid glands without compromising a clinically acceptable PTV coverage. Resulting plans were inter-compared based on dose-volume parameters for OAR and PTVs, target homogeneity, conformity, and plans complexity and deliverability. RESULTS: The plans optimised using TO in combination with RP showed significantly improved OAR sparing while maintaining comparable target dose coverage to the clinical plans. The largest OAR sparing compared to the clinical plans was achieved by the RP_TO+ plans, which reported a mean parotid dose average of 15.0 ± 4.6 Gy vs 22.9 ± 5.5 Gy (left) and 17.1 ± 5.0 Gy vs 24.8 ± 5.8 Gy (right). However, at the same time, RP_TO+ showed a slight dose reduction for the 99% volume of the nodal PTV and an increase for the 95% (when comparing to the clinical plans 76.0 ± 1.2 vs 77.4 ± 0.6 and 80.9 ± 0.9 vs 79.7 ± 0.4) but remained within clinical acceptance. Plans optimised with RP and TO combined, showed an increase in complexity but were proven to be deliverable. CONCLUSION: The use of TO combined with RP during the optimisation of VMAT plans enhanced plan quality the most. For the RP_TO+ plans, acceptance of a slight deterioration in nodal PTV allowed the largest reduction in OAR dose to be achieved.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Órganos en Riesgo/efectos de la radiación , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia de Intensidad Modulada/métodos , Humanos , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...