Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 70: 103071, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38354629

RESUMEN

AIMS: We examined the cardiovascular effects of celiac disease (CeD) in a humanized mouse model, with a focus on vascular inflammation, endothelial dysfunction, and oxidative stress. METHODS AND RESULTS: NOD.DQ8 mice genetically predisposed to CeD were subjected to a diet regime and oral gavage to induce the disease (gluten group vs. control). We tested vascular function, confirmed disease indicators, and evaluated inflammation and oxidative stress in various tissues. Plasma proteome profiling was also performed. CeD markers were confirmed in the gluten group, indicating increased blood pressure and impaired vascular relaxation. Pro-inflammatory genes were upregulated in this group, with increased CD11b+ myeloid cell infiltration and oxidative stress parameters observed in aortic and heart tissue. However, heart function remained unaffected. Plasma proteomics suggested the cytokine interleukin-17A (IL-17A) as a link between gut and vascular inflammation. Cardiovascular complications were reversed by adopting a gluten-free diet. CONCLUSION: Our study sheds light in the heightened cardiovascular risk associated with active CeD, revealing a gut-to-cardiovascular inflammatory axis potentially mediated by immune cell infiltration and IL-17A. These findings augment our understanding of the link between CeD and cardiovascular disease providing clinically relevant insight into the underlying mechanism. Furthermore, our discovery that cardiovascular complications can be reversed by a gluten-free diet underscores a critical role for dietary interventions in mitigating cardiovascular risks associated with CeD.


Asunto(s)
Enfermedad Celíaca , Hipertensión , Ratones , Animales , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-17/farmacología , Ratones Endogámicos NOD , Estrés Oxidativo , Inflamación , Glútenes/farmacología
2.
Sci Total Environ ; 903: 166106, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37567316

RESUMEN

Large epidemiological studies have shown that traffic noise promotes the development of cardiometabolic diseases. It remains to be established how long these adverse effects of noise may persist in response to a noise-off period. We investigated the effects of acute aircraft noise exposure (mean sound level of 72 dB(A) applied for 4d) on oxidative stress and inflammation mediating vascular dysfunction and increased blood pressure in male C57BL/6 J mice. 1, 2 or 4d of noise cessation after a 4d continuous noise exposure period completely normalized noise-induced endothelial dysfunction of the aorta (measured by acetylcholine-dependent relaxation) already after a 1d noise pause. Vascular oxidative stress and the increased blood pressure were partially corrected, while markers of inflammation (VCAM-1, IL-6 and leukocyte oxidative burst) showed a normalization within 4d of noise cessation. In contrast, endothelial dysfunction, oxidative stress, and inflammation of the cerebral microvessels of noise-exposed mice did not improve at all. These data demonstrate that the recovery from noise-induced damage is more complex than expected demonstrating a complete restoration of large conductance vessel function but persistent endothelial dysfunction of the microcirculation. These findings also imply that longer noise pauses are required to completely reverse noise-induced vascular dysfunction including the resistance vessels.

3.
Eur J Prev Cardiol ; 30(15): 1554-1568, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37185661

RESUMEN

AIMS: Environmental stressors such as traffic noise represent a global threat, accounting for 1.6 million healthy life years lost annually in Western Europe. Therefore, the noise-associated health side effects must be effectively prevented or mitigated. Non-pharmacological interventions such as physical activity or a balanced healthy diet are effective due to the activation of the adenosine monophosphate-activated protein kinase (α1AMPK). Here, we investigated for the first time in a murine model of aircraft noise-induced vascular dysfunction the potential protective role of α1AMPK activated via exercise, intermittent fasting, and pharmacological treatment. METHODS AND RESULTS: Wild-type (B6.Cg-Tg(Cdh5-cre)7Mlia/J) mice were exposed to aircraft noise [maximum sound pressure level of 85 dB(A), average sound pressure level of 72 dB(A)] for the last 4 days. The α1AMPK was stimulated by different protocols, including 5-aminoimidazole-4-carboxamide riboside application, voluntary exercise, and intermittent fasting. Four days of aircraft noise exposure produced significant endothelial dysfunction in wild-type mice aorta, mesenteric arteries, and retinal arterioles. This was associated with increased vascular oxidative stress and asymmetric dimethylarginine formation. The α1AMPK activation with all three approaches prevented endothelial dysfunction and vascular oxidative stress development, which was supported by RNA sequencing data. Endothelium-specific α1AMPK knockout markedly aggravated noise-induced vascular damage and caused a loss of mitigation effects by exercise or intermittent fasting. CONCLUSION: Our results demonstrate that endothelial-specific α1AMPK activation by pharmacological stimulation, exercise, and intermittent fasting effectively mitigates noise-induced cardiovascular damage. Future population-based studies need to clinically prove the concept of exercise/fasting-mediated mitigation of transportation noise-associated disease.


Traffic noise, e.g. from aircraft, significantly contributes to an increased risk of cardiovascular or metabolic diseases in the general population by brain-dependent stress reactions leading to higher levels of circulating stress hormones and vasoconstrictors, all of which cause hypertension, oxidative stress, and inflammation. With the present experimental studies, we provide for the first time molecular mechanisms responsible for successful noise mitigation: Physical exercise, intermittent fasting, and pharmacological activation of the adenosine monophosphate-activated protein kinase (AMPK), a metabolic master regulator protein, prevent cardiovascular damage caused by noise exposure, such as hypertension, endothelial dysfunction, and reactive oxygen species formation (e.g. free radicals) and inflammation.These beneficial mitigation manoeuvers are secondary to an activation of the endothelial AMPK, thereby mimicking the antidiabetic drug metformin.


Asunto(s)
Endotelio Vascular , Ruido del Transporte , Humanos , Ratones , Animales , Endotelio Vascular/metabolismo , Estrés Oxidativo , Ruido del Transporte/efectos adversos , Ayuno , Aeronaves , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología
4.
Life Sci ; 284: 119879, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390723

RESUMEN

AIMS: Doxorubicin (DOX) is an important drug for the treatment of various tumor entities. However, the occurrence of heart failure limits its application. This study investigated differential gene expression profiles in the left and right ventricles of DOX treated mice with either preserved or impaired myocardial function. We provide new mechanistic insights into the pathophysiology of DOX-induced heart failure and have discovered pathways that counteract DOX-induced cardiotoxicity. MAIN METHODS: We used in total 48 male mice and applied a chronic low dose DOX administration (5 mg/kg per injection, in total 20 mg/kg over 4 weeks) to induce heart failure. Echocardiographic parameters were evaluated one week after the final dose and mice were separated according to functional parameters into doxorubicin responding and non-responding animals. Post mortem, measurements of reactive oxygen species (ROS) and gene expression profiling was performed in separated right and left hearts. KEY FINDINGS: We detected significant ROS production in the left heart of the mice in response to DOX treatment, although interestingly, not in the right heart. We found that transcriptional changes differ between right and left heart correlating with the occurrence of myocardial dysfunction. SIGNIFICANCE: Doxorubicin induces changes in gene expression in the entire heart of animals without necessarily impairing cardiac function. We identified a set of transcripts that are associated with DOX cardiotoxicity. These might represent promising targets to ameliorate DOX-induced heart failure. Moreover, our results emphasize that parameters of left and right heart function should be evaluated during standardized echocardiography in patients undergoing DOX therapy.


Asunto(s)
Doxorrubicina/efectos adversos , Pruebas de Función Cardíaca , Miocardio/patología , Transcripción Genética , Animales , Análisis por Conglomerados , Electrocardiografía , Perfilación de la Expresión Génica , Pruebas de Función Cardíaca/efectos de los fármacos , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...