Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
3.
Sci Total Environ ; 838(Pt 2): 156195, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35623521

RESUMEN

Human-wildlife conflicts are associated with a threat to large carnivores, as well as with economic and social costs, thus challenging conservation management around the world. In this study, we explored the effectiveness of common management interventions used worldwide for the purpose of conflict reduction using an evidence-based framework combining expert assessment of intervention effectiveness, impact and uncertainty of assessment. We first conducted a literature review of human-large carnivore conflicts across the world. Based on this review, we identified three main types of management interventions (non-lethal, translocations, and lethal management) and we assessed their effectiveness. Our review indicates that, although the characteristics of conflicts with large carnivores are heavily influenced by the local context and the species, the main issues are depredation on livestock, space-sharing, and attacks on humans. Non-lethal interventions are more likely to reduce conflict, whereas translocations and lethal interventions are mostly ineffective and/or harmful to carnivore populations, without fostering successful long-term coexistence. The literature on conflict management is often imprecise and lacks consistency between studies or situations, which generally makes comparisons difficult. Our protocol allows for the reliable comparison of experiments characterized by heterogeneous standards, response variables, protocols, and quality of evidence. Nevertheless, we encourage the use of systematic protocols with common good standards in order to provide more reliable empirical evidence. This would clarify the relative effectiveness of conflict management strategies and contribute to the global reduction in the occurrence of human-large carnivore conflicts across the world.


Asunto(s)
Carnívoros , Conservación de los Recursos Naturales , Animales , Animales Salvajes , Conservación de los Recursos Naturales/métodos , Humanos , Ganado , Conducta Predatoria
4.
Nat Commun ; 11(1): 4461, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929068

RESUMEN

Protected areas (PAs) are the cornerstones of global biodiversity conservation efforts, but to fulfil this role they must be effective at conserving the ecosystems and species that occur within their boundaries. Adequate monitoring datasets that allow comparing biodiversity between protected and unprotected sites are lacking in tropical regions. Here we use the largest citizen science biodiversity dataset - eBird - to quantify the extent to which protected areas in eight tropical forest biodiversity hotspots are effective at retaining bird diversity. We find generally positive effects of protection on the diversity of bird species that are forest-dependent, endemic to the hotspots, or threatened or Near Threatened, but not on overall bird species richness. Furthermore, we show that in most of the hotspots examined this benefit is driven by protected areas preventing both forest loss and degradation. Our results provide evidence that, on average, protected areas contribute measurably to conserving bird species in some of the world's most diverse and threatened terrestrial ecosystems.


Asunto(s)
Aves/fisiología , Conservación de los Recursos Naturales , Bosques , Animales , Biodiversidad , Geografía , América del Sur , Especificidad de la Especie
5.
Nat Commun ; 10(1): 3109, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337752

RESUMEN

Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.


Asunto(s)
Aclimatación/fisiología , Aves/fisiología , Cambio Climático , Fenotipo , Animales , Selección Genética/fisiología , Factores de Tiempo
6.
Biol Rev Camb Philos Soc ; 93(1): 55-71, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28447398

RESUMEN

Key global indicators of biodiversity decline, such as the IUCN Red List Index and the Living Planet Index, have relatively long assessment intervals. This means they, due to their inherent structure, function as late-warning indicators that are retrospective, rather than prospective. These indicators are unquestionably important in providing information for biodiversity conservation, but the detection of early-warning signs of critical biodiversity change is also needed so that proactive management responses can be enacted promptly where required. Generally, biodiversity conservation has dealt poorly with the scattered distribution of necessary detailed information, and needs to find a solution to assemble, harmonize and standardize the data. The prospect of monitoring essential biodiversity variables (EBVs) has been suggested in response to this challenge. The concept has generated much attention, but the EBVs themselves are still in development due to the complexity of the task, the limited resources available, and a lack of long-term commitment to maintain EBV data sets. As a first step, the scientific community and the policy sphere should agree on a set of priority candidate EBVs to be developed within the coming years to advance both large-scale ecological research as well as global and regional biodiversity conservation. Critical ecological transitions are of high importance from both a scientific as well as from a conservation policy point of view, as they can lead to long-lasting biodiversity change with a high potential for deleterious effects on whole ecosystems and therefore also on human well-being. We evaluated candidate EBVs using six criteria: relevance, sensitivity to change, generalizability, scalability, feasibility, and data availability and provide a literature-based review for eight EBVs with high sensitivity to change. The proposed suite of EBVs comprises abundance, allelic diversity, body mass index, ecosystem heterogeneity, phenology, range dynamics, size at first reproduction, and survival rates. The eight candidate EBVs provide for the early detection of critical and potentially long-lasting biodiversity change and should be operationalized as a priority. Only with such an approach can science predict the future status of global biodiversity with high certainty and set up the appropriate conservation measures early and efficiently. Importantly, the selected EBVs would address a large range of conservation issues and contribute to a total of 15 of the 20 Aichi targets and are, hence, of high biological relevance.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Seguimiento de Parámetros Ecológicos/métodos , Monitoreo del Ambiente/métodos , Animales , Cooperación Internacional
7.
Biol Rev Camb Philos Soc ; 93(1): 600-625, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28766908

RESUMEN

Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence-absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals.


Asunto(s)
Distribución Animal/fisiología , Biodiversidad , Monitoreo del Ambiente/métodos , Animales , Modelos Biológicos
8.
Ecol Evol ; 7(17): 6803-6813, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28904761

RESUMEN

Behavioral thermoregulation is an important mechanism allowing ectotherms to respond to thermal variations. Its efficiency might become imperative for securing activity budgets under future climate change. For diurnal lizards, thermal microhabitat variability appears to be of high importance, especially in hot deserts where vegetation is highly scattered and sensitive to climatic fluctuations. We investigated the effects of a shading gradient from vegetation on body temperatures and activity timing for two diurnal, terrestrial desert lizards, Ctenotus regius, and Morethia boulengeri, and analyzed their changes under past, present, and future climatic conditions. Both species' body temperatures and activity timing strongly depended on the shading gradient provided by vegetation heterogeneity. At high temperatures, shaded locations provided cooling temperatures and increased diurnal activity. Conversely, bushes also buffered cold temperature by saving heat. According to future climate change scenarios, cooler microhabitats might become beneficial to warm-adapted species, such as C. regius, by increasing the duration of daily activity. Contrarily, warmer microhabitats might become unsuitable for less warm-adapted species such as M. boulengeri for which midsummers might result in a complete restriction of activity irrespective of vegetation. However, total annual activity would still increase provided that individuals would be able to shift their seasonal timing towards spring and autumn. Overall, we highlight the critical importance of thermoregulatory behavior to buffer temperatures and its dependence on vegetation heterogeneity. Whereas studies often neglect ecological processes when anticipating species' responses to future climate change the strongest impact of a changing climate on terrestrial ectotherms in hot deserts is likely to be the loss of shaded microhabitats rather than the rise in temperature itself. We argue that conservation strategies aiming at addressing future climate changes should focus more on the cascading effects of vegetation rather than on shifts of species distributions predicted solely by climatic envelopes.

10.
Sci Rep ; 7: 41591, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134310

RESUMEN

Temporal baselines are needed for biodiversity, in order for the change in biodiversity to be measured over time, the targets for biodiversity conservation to be defined and conservation progress to be evaluated. Limited biodiversity information is widely recognized as a major barrier for identifying temporal baselines, although a comprehensive quantitative assessment of this is lacking. Here, we report on the temporal baselines that could be drawn from biodiversity monitoring schemes in Europe and compare those with the rise of important anthropogenic pressures. Most biodiversity monitoring schemes were initiated late in the 20th century, well after anthropogenic pressures had already reached half of their current magnitude. Setting temporal baselines from biodiversity monitoring data would therefore underestimate the full range of impacts of major anthropogenic pressures. In addition, biases among taxa and organization levels provide a truncated picture of biodiversity over time. These limitations need to be explicitly acknowledged when designing management strategies and policies as they seriously constrain our ability to identify relevant conservation targets aimed at restoring or reversing biodiversity losses. We discuss the need for additional research efforts beyond standard biodiversity monitoring to reconstruct the impacts of major anthropogenic pressures and to identify meaningful temporal baselines for biodiversity.

11.
Glob Chang Biol ; 22(7): 2505-15, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26950650

RESUMEN

Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge.


Asunto(s)
Biodiversidad , Cambio Climático , Predicción , Ecosistema , Modelos Teóricos
12.
PLoS One ; 10(5): e0125684, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25973884

RESUMEN

Quantifying population status is a key objective in many ecological studies, but is often difficult to achieve for cryptic or elusive species. Here, non-invasive genetic capture-mark-recapture (CMR) methods have become a very important tool to estimate population parameters, such as population size and sex ratio. The Eurasian otter (Lutra lutra) is such an elusive species of management concern and is increasingly studied using faecal-based genetic sampling. For unbiased sex ratios or population size estimates, the marking behaviour of otters has to be taken into account. Using 2132 otter faeces of a wild otter population in Upper Lusatia (Saxony, Germany) collected over six years (2006-2012), we studied the marking behaviour and applied closed population CMR models accounting for genetic misidentification to estimate population sizes and sex ratios. We detected a sex difference in the marking behaviour of otters with jelly samples being more often defecated by males and placed actively exposed on frequently used marking sites. Since jelly samples are of higher DNA quality, it is important to not only concentrate on this kind of samples or marking sites and to invest in sufficiently high numbers of repetitions of non-jelly samples to ensure an unbiased sex ratio. Furthermore, otters seemed to increase marking intensity due to the handling of their spraints, hence accounting for this behavioural response could be important. We provided the first precise population size estimate with confidence intervals for Upper Lusatia (for 2012: N = 20 ± 2.1, 95% CI = 16-25) and showed that spraint densities are not a reliable index for abundances. We further demonstrated that when minks live in sympatry with otters and have comparably high densities, a non-negligible number of supposed otter samples are actually of mink origin. This could severely bias results of otter monitoring if samples are not genetically identified.


Asunto(s)
Distribución Animal/fisiología , ADN/genética , Conducta Excretoria Animal/fisiología , Nutrias/genética , Animales , Conservación de los Recursos Naturales , Heces/química , Femenino , Genotipo , Alemania , Masculino , Visón/clasificación , Visón/genética , Nutrias/clasificación , Densidad de Población , Razón de Masculinidad
13.
Ecol Evol ; 5(23): 5722-34, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-27069620

RESUMEN

Following over 20 years of research on the climatic effects on biodiversity we now have strong evidence that climate change affects phenology, fitness, and distribution ranges of different taxa, including birds. Bird phenology likely responds to changes in local weather. It is also affected by climatic year-to-year variations on larger scales. Although such scale-related effects are common in ecology, most studies analyzing the effects of climate change were accomplished using climatic information on a single spatial scale. In this study, we aimed at determining the scale-dependent sensitivity of breeding phenology and success to climate change in a migratory passerine bird, the barn swallow (Hirundo rustica). For both annual broods, we investigated effects of local weather (local scale) and the North Atlantic Oscillation (NAO, large scale) on the timing of breeding and breeding success. Consistent with previous studies in migratory birds we found that barn swallows in Eastern Germany bred progressively earlier. At the same time, they showed reduced breeding success over time in response to recent climatic changes. Responses to climatic variation were observed on both local and large climatic scales, but they differed with respect to the ecological process considered. Specifically, we found that the timing of breeding was primarily influenced by large-scale NAO variations and to a lesser extent by local weather on the breeding grounds. Conversely, climatic conditions on the local scale affected breeding success, exclusively. The observed decrease in breeding success over years is likely a consequence of scale-related mismatches between climatic conditions during different breeding phases. This provides further evidence that a species' response of earlier breeding may not be enough to cope with climate change. Our results emphasize the importance of considering the response of ecological processes along different climatic scales in order to better understand the complexity of climate change effects on biodiversity.

14.
PLoS One ; 6(12): e27453, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22194784

RESUMEN

Animal translocations are human-induced colonizations that can represent opportunities to contribute to the knowledge on the behavioral and demographic processes involved in the establishment of animal populations. Habitat selection behaviors, such as social cueing, have strong implications on dispersal and affect the establishment success of translocations. Using modeling simulations with a two-population network model (a translocated population and a remnant population), we investigated the consequences of four habitat selection strategies on post-translocation establishment probabilities in short- and long-lived species. Two dispersal strategies using social cues (conspecific attraction and habitat copying) were compared to random and quality-based strategies. We measured the sensitivity of local extinctions to dispersal strategies, life cycles, release frequencies, remnant population and release group sizes, the proportion of breeders and the connectivity between populations. Our results indicate that social behaviors can compromise establishment as a result of post-release dispersal, particularly in long-lived species. This behavioral mechanism, the "vacuum effect", arises from increased emigration in populations that are small relative to neighboring populations, reducing their rate of population growth. The vacuum effect can drive small remnant populations to extinction when a translocated group is large. In addition, the magnitude of the vacuum effect varies non-linearly with connectivity. The vacuum effect represents a novel form of the behaviorally mediated Allee effect that can cause unexpected establishment failures or population extinctions in response to social cueing. Accounting for establishment probabilities as a conditional step to the persistence of populations would improve the accuracy of predicting the fates of translocated or natural (meta)populations.


Asunto(s)
Migración Animal/fisiología , Modelos Biológicos , Conducta Social , Animales , Señales (Psicología) , Ecosistema , Extinción Biológica , Humanos , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...