Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775404

RESUMEN

BACKGROUND: The beet webworm, Loxostege sticticalis, a worldwide pest of many crops, performs a seasonal migration, causing periodic outbreaks in Asia, Europe and North America. Although long-distance migration is well documented in China, patterns of transboundary migration among China, Russia and Mongolia are largely unknown. We performed a phase analysis of L. sticticalis periodic outbreaks among three countries based on 30 years of historical population data, analyzed the wind systems during migration over boundary regions, and traced the migratory routes in a case study of outbreaks in 2008 by trajectory simulation. RESULTS: Highly synchronized outbreak years of L. sticticalis were observed between China and Mongolia, China and eastern Siberia, China and western Siberia, Mongolia and eastern Siberia, eastern Siberia and western Siberia from 1978 to 2008, indicating possible transboundary migration between these regions. Winds at 300-600 m altitude, where adult migration usually occurs, also showed a high probability of northwestern winds in Haila'er (China), Chita (Russia) and Choybalsan (Mongolia), favoring successful adult migration from these areas to northern and northeastern China. Back trajectory analysis further showed that the first-generation adults that caused the severe outbreak of second-generation larvae in 2008 originated from eastern Siberia, eastern Mongolia, and the boundary regions of China-Russia and China-Mongolia. CONCLUSION: Our findings demonstrated that the source of L. sticticalis outbreaks in northern China was closely related to the outbreaks in Siberia and Mongolia via long-distance transboundary windborne migration. This information will help guide international monitoring and management strategies against this notorious pest. © 2024 Society of Chemical Industry.

2.
Animals (Basel) ; 14(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38612363

RESUMEN

The Mongolian racerunner, Eremias argus, is a small lizard endemic to Northeast Asia that can serve as an excellent model for investigating how geography and past climate change have jointly influenced the evolution of biodiversity in this region. To elucidate the processes underlying its diversification and demography, we reconstructed the range-wide phylogeographic pattern and evolutionary trajectory, using phylogenetic, population genetic, landscape genetic, Bayesian phylogeographic reconstruction and ecological niche modeling approaches. Phylogenetic analyses of the mtDNA cyt b gene revealed eight lineages that were unbounded by geographic region. The genetic structure of E. argus was mainly determined by geographic distance. Divergence dating indicated that E. argus and E. brenchleyi diverged during the Mid-Pliocene Warm Period. E. argus was estimated to have coalesced at~0.4351 Ma (Marine Isotope Stage 19). Bayesian phylogeographic diffusion analysis revealed out-of-Inner Mongolia and rapid colonization events from the end of the Last Interglacial to the Last Glacial Maximum, which is consistent with the expanded suitable range of the Last Glacial Maximum. Pre-Last Glacial Maximum growth of population is presented for most lineages of E. argus. The Glacial Maximum contraction model and the previous multiple glacial refugia hypotheses are rejected. This may be due to an increase in the amount of climatically favorable habitats in Northeast Asia. Furthermore, E. argus barbouri most likely represents an invalid taxon. The present study is the first to report a range-wide phylogeography of reptiles over such a large region in Northeast Asia. Our results make a significant contribution towards understanding the biogeography of the entire Northeast Asia.

3.
Animals (Basel) ; 13(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067077

RESUMEN

The joint impacts of historical geological events and Quaternary climatic oscillations in Northwest China on species evolution have been examined extensively in plant under a phylogeographic perspective. However, animal phylogeographic analyses in this region are still limited. The Alashan pit viper, Gloydius cognatus, occurs primarily in arid Northwest China and adjacent areas. Based on variation at two mtDNA genes (ND4 and Cytb) in 27 individuals representing 24 populations, the spatial genetic structure and demographic history of G. cognatus were examined across its geographic range. Phylogenetic analyses revealed two well-supported allopatric clades (each with two distinct subclades/lineages), distributed across the southern (Qaidam Basin, Lanzhou Basin, and Zoige Basin [S1]; Loess Plateau [S2]) and northern (Ily Basin [N1]; Junggar Basin and Mongolian Plateau [N2]) regions. AMOVA analysis demonstrated that over 76% of the observed genetic variation was related to these lineage splits, indicating substantial genetic differentiation among the four lineages. A strong pattern of isolation-by-distance across the sampling populations suggested that geographic distance principally shaped the genetic structure. The four lineages diverged by 0.9-2.2% for the concatenated data, which were estimated to have coalesced ~1.17 million years ago (Mya), suggesting that the expansions of the Badain Jaran, Tengger, and Mu Us deserts during the Xixiabangma glaciation likely interrupted gene flow and triggered the observed divergence in the southern and northern regions. Subsequently, the early Pleistocene integration of the Yellow River and associated deserts expansion promoted the differentiation of S1 and S2 lineages (~0.9 Mya). Both mitochondrial evidence and ecological niche modeling (ENM) reject the signature of demographic and range contractions during the LGM for G. cognatus. In addition, ENM predicts that the suitable habitat of G. cognatus will contract in the future. As such, the conservation and management of ESUs should be a priority. Our findings provide the first insights on the lineage diversification and population dynamics of the Alashan pit viper in relation to geological history and Pleistocene climatic oscillations in arid Northwest China.

4.
Isotopes Environ Health Stud ; 54(6): 608-621, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30156882

RESUMEN

In the last decades a drastic increase in air temperature but a stable precipitation regime in Mongolia has led to gradual drying conditions. Thus, we evaluated the effect of spatial and climatic characteristics on the soil-plant nitrogen dynamics in three representative larch stands (Larix sibirica) with different geographical and climatic conditions using stable nitrogen isotopes. The results showed significant differences in the soil inorganic N content among sites and consequently a different isotopic composition in the plant-soil system. Litter, bark and wood had the lowest δ15N values for all sites, slightly higher δ15N values for needles, while the highest δ15N values were observed for roots and soil. These differences could be the result of the larch stands age themselves, but were in agreement with the spatial and climatic characteristics of the sites. Based on the δ15N value a higher reliance on ectomycorrhizal fungi (ECMF) was observed in the warmest and driest site, while lower dependency was shown in the cooler northern site with higher soil inorganic N content. In both sites, the rate of air temperature increase has been similar in the last decades; however, their soil-plant N dynamics showed different characteristics.


Asunto(s)
Larix/química , Isótopos de Nitrógeno/análisis , Suelo/química , Taiga , Carbono/análisis , Clima , Larix/microbiología , Mongolia , Micorrizas , Nitrógeno/análisis , Nitrógeno/metabolismo , Raíces de Plantas/química , Madera/química
5.
Isotopes Environ Health Stud ; 53(1): 54-69, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27426009

RESUMEN

The spatial patterns of plant and soil δ15N and associated processes in the N cycle were investigated at a forest-grassland boundary in northern Mongolia. Needles of Larix sibirica Ledeb. and soils collected from two study areas were analysed to calculate the differences in δ15N between needle and soil (Δδ15N). Δδ15N showed a clear variation, ranging from -8 ‰ in the forest to -2 ‰ in the grassland boundary, and corresponded to the accumulation of organic layer. In the forest, the separation of available N produced in the soil with 15N-depleted N uptake by larch and 15N-enriched N immobilization by microorganisms was proposed to cause large Δδ15N, whereas in the grassland boundary, small Δδ15N was explained by the transport of the most available N into larch. The divergence of available N between larch and microorganisms in the soil, and the accumulation of diverged N in the organic layer control the variation in Δδ15N.


Asunto(s)
Monitoreo del Ambiente , Larix/química , Nitrógeno/análisis , Hojas de la Planta/química , Suelo/química , Bosques , Pradera , Mongolia , Isótopos de Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA