Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Endocrinol ; 258(1)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37014303

RESUMEN

Modeling preeclampsia remains difficult due to the nature of the disease and the unique characteristics of the human placenta. Members of the Hominidae superfamily have a villous hemochorial placenta that is different in structure from those of other therian mammals, including the mouse hemochorial placenta, making this common animal model less ideal for studying this disease. Human placental tissues delivered from pregnancies complicated by preeclampsia are excellent for assessing the damage the disease causes but cannot answer how or when the disease begins. Symptoms of preeclampsia manifest halfway through pregnancy or later, making it currently impossible to identify preeclampsia in human tissues obtained from an early stage of pregnancy. Many animal and cell culture models recapitulate various aspects of preeclampsia, though none can on its own completely capture the complexity of human preeclampsia. It is particularly difficult to uncover the cause of the disease using models in which the disease is induced in the lab. However, the many ways by which preeclampsia-like features can be induced in a variety of laboratory animals are consistent with the idea that preeclampsia is a two-stage disease, in which a variety of initial insults may lead to placental ischemia, and ultimately systemic symptoms. The recent development of stem cell-based models, organoids, and various coculture systems have brought in vitro systems with human cells ever closer to recapitulating in vivo events that lead to placental ischemia.


Asunto(s)
Placenta , Preeclampsia , Ratones , Animales , Embarazo , Femenino , Humanos , Técnicas de Cocultivo , Técnicas de Cultivo de Célula , Isquemia , Trofoblastos , Mamíferos
2.
Biol Reprod ; 102(2): 475-488, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31616930

RESUMEN

Pig conceptuses secrete estrogens (E2), interleukin 1 beta 2 (IL1B2), and prostaglandins (PGs) during the period of rapid trophoblast elongation and establishment of pregnancy. Previous studies established that IL1B2 is essential for rapid conceptus elongation, whereas E2 is not essential for conceptus elongation or early maintenance of the corpora lutea. The objective of the present study was to determine if conceptus expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and release of PG are important for early development and establishment of pregnancy. To understand the role of PTGS2 in conceptus elongation and pregnancy establishment, a loss-of-function study was conducted by editing PTGS2 using CRISPR/Cas9 technology. Wild-type (PTGS2+/+) and null (PTGS2-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer. Immunolocalization of PTGS2 and PG production was absent in cultured PTGS2-/- blastocysts on day 7. PTGS2+/+ and PTGS2-/- blastocysts were transferred into surrogate gilts, and the reproductive tracts were collected on either days 14, 17, or 35 of pregnancy. After flushing the uterus on days 14 and 17, filamentous conceptuses were cultured for 3 h to determine PG production. Conceptus release of total PG, prostaglandin F2⍺ (PGF2α), and PGE in culture media was lower with PTGS2-/- conceptuses compared to PTGS2+/+ conceptuses. However, the total PG, PGF2α, and PGE content in the uterine flushings was not different. PTGS2-/- conceptus surrogates allowed to continue pregnancy were maintained beyond 30 days of gestation. These results indicate that pig conceptus PTGS2 is not essential for early development and establishment of pregnancy in the pig.


Asunto(s)
Blastocisto/metabolismo , Ciclooxigenasa 2/metabolismo , Implantación del Embrión/fisiología , Desarrollo Embrionario/fisiología , Endometrio/metabolismo , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Ciclooxigenasa 2/genética , Dinoprost/metabolismo , Dinoprostona/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia Nuclear , Embarazo , Porcinos
3.
J Biol Chem ; 294(46): 17301-17313, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31591264

RESUMEN

A successful pregnancy is critically dependent upon proper placental development and function. During human placentation, villous cytotrophoblast (CTB) progenitors differentiate to form syncytiotrophoblasts (SynTBs), which provide the exchange surface between the mother and fetus and secrete hormones to ensure proper progression of pregnancy. However, epigenetic mechanisms that regulate SynTB differentiation from CTB progenitors are incompletely understood. Here, we show that lysine-specific demethylase 1 (LSD1; also known as KDM1A), a histone demethylase, is essential to this process. LSD1 is expressed both in CTB progenitors and differentiated SynTBs in first-trimester placental villi; accordingly, expression in SynTBs is maintained throughout gestation. Impairment of LSD1 function in trophoblast progenitors inhibits induction of endogenous retrovirally encoded genes SYNCYTIN1/endogenous retrovirus group W member 1, envelope (ERVW1) and SYNCYTIN2/endogenous retrovirus group FRD member 1, envelope (ERVFRD1), encoding fusogenic proteins critical to human trophoblast syncytialization. Loss of LSD1 also impairs induction of chorionic gonadotropin α (CGA) and chorionic gonadotropin ß (CGB) genes, which encode α and ß subunits of human chorionic gonadotrophin (hCG), a hormone essential to modulate maternal physiology during pregnancy. Mechanistic analyses at the endogenous ERVW1, CGA, and CGB loci revealed a regulatory axis in which LSD1 induces demethylation of repressive histone H3 lysine 9 dimethylation (H3K9Me2) and interacts with transcription factor GATA2 to promote RNA polymerase II (RNA-POL-II) recruitment and activate gene transcription. Our study reveals a novel LSD1-GATA2 axis, which regulates human trophoblast syncytialization.


Asunto(s)
Diferenciación Celular/genética , Factor de Transcripción GATA2/genética , Histona Demetilasas/genética , Trofoblastos/metabolismo , Vellosidades Coriónicas/crecimiento & desarrollo , Vellosidades Coriónicas/metabolismo , Epigénesis Genética/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Productos del Gen env/genética , Humanos , Relaciones Madre-Hijo , Placentación/genética , Embarazo , Proteínas Gestacionales/genética , ARN Polimerasa II/genética , Transducción de Señal/genética
4.
Development ; 145(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30201685

RESUMEN

Early mammalian development is crucially dependent on the establishment of oxidative energy metabolism within the trophectoderm (TE) lineage. Unlike the inner cell mass, TE cells enhance ATP production via mitochondrial oxidative phosphorylation (OXPHOS) and this metabolic preference is essential for blastocyst maturation. However, molecular mechanisms that regulate establishment of oxidative energy metabolism in TE cells are incompletely understood. Here, we show that conserved transcription factor TEAD4, which is essential for pre-implantation mammalian development, regulates this process by promoting mitochondrial transcription. In developing mouse TE and TE-derived trophoblast stem cells (TSCs), TEAD4 localizes to mitochondria, binds to mitochondrial DNA (mtDNA) and facilitates its transcription by recruiting mitochondrial RNA polymerase (POLRMT). Loss of TEAD4 impairs recruitment of POLRMT, resulting in reduced expression of mtDNA-encoded electron transport chain components, thereby inhibiting oxidative energy metabolism. Our studies identify a novel TEAD4-dependent molecular mechanism that regulates energy metabolism in the TE lineage to ensure mammalian development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Desarrollo Embrionario/genética , Metabolismo Energético , Mamíferos/embriología , Mamíferos/genética , Mitocondrias/genética , Proteínas Musculares/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Blastocisto/citología , Blastocisto/metabolismo , Blastocisto/ultraestructura , ADN Mitocondrial/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Ectodermo/citología , Transporte de Electrón , Metabolismo Energético/genética , Ratones , Mitocondrias/ultraestructura , Modelos Biológicos , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Oxidación-Reducción , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción de Dominio TEA , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Trofoblastos/citología
5.
Nat Commun ; 9(1): 2435, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934619

RESUMEN

Uterine glands are essential for pregnancy establishment. By employing forkhead box A2 (FOXA2)-deficient mouse models coupled with leukemia inhibitory factor (LIF) repletion, we reveal definitive roles of uterine glands in embryo implantation and stromal cell decidualization. Here we report that LIF from the uterine glands initiates embryo-uterine communication, leading to embryo attachment and stromal cell decidualization. Detailed histological and molecular analyses discovered that implantation crypt formation does not involve uterine glands, but removal of the luminal epithelium is delayed and subsequent decidualization fails in LIF-replaced glandless but not gland-containing FOXA2-deficient mice. Adverse ripple effects of those dysregulated events in the glandless uterus result in embryo resorption and pregnancy failure. These studies provide evidence that uterine glands synchronize embryo-endometrial interactions, coordinate on-time embryo implantation, and impact stromal cell decidualization, thereby ensuring embryo viability, placental growth, and pregnancy success.


Asunto(s)
Decidua/metabolismo , Implantación del Embrión/fisiología , Factor Nuclear 3-beta del Hepatocito/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Placentación/fisiología , Animales , Decidua/citología , Embrión de Mamíferos , Femenino , Factor Nuclear 3-beta del Hepatocito/genética , Factor Inhibidor de Leucemia/genética , Masculino , Ratones , Ratones Noqueados , Embarazo , Células del Estroma/metabolismo
6.
Endocrinology ; 159(4): 1897-1909, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29546371

RESUMEN

Forkhead box A2 (FOXA2) is a pioneer transcription factor involved in organ development, function, and cancer. In the uterus, FOXA2 is essential for pregnancy and expressed specifically in the glands of the endometrium. Loss of FOXA2 function occurs during development of endometrial cancer in humans. The current study describes the development of a mouse model for conditional expression of mouse FOXA2. Using a system consisting of a minigene located at the Rosa26 locus, we generated a CAG-S-mFOXA2 allele in embryonic stem cells and subsequently in mice; before activation, the minigene is silent because of a floxed stop cassette inserted between the promoter and the transgene. To validate functionality, mice with the CAG-S-mFOXA2 allele were crossed with progesterone receptor (Pgr)-Cre mice and lactotransferrin (Ltf)-iCre mice that express Cre in the immature and adult uterus, respectively. In immature Pgr-Cre-CAG-S-mFoxa2 mice, FOXA2 protein was expressed in the luminal epithelium (LE), glandular epithelium (GE), stroma, and inner layer of the myometrium. Interestingly, FOXA2 protein was not observed in most of the LE of uteri from adult Pgr-Cre-CAG-S-mFoxa2 mice, although FOXA2 was maintained in the stroma, GE, and myometrium. The adult Pgr-Cre-CAG-S-mFoxa2 females were completely infertile. In contrast, Ltf-iCre-CAG-S-mFoxa2 mice were fertile with no detectable histological differences in the uterus. The adult uterus of Pgr-Cre-CAG-S-mFoxa2 mice was smaller, contained few endometrial glands, and displayed areas of partially stratified LE and GE. This transgenic mouse line is a valuable resource to elucidating and exploring FOXA2 function.


Asunto(s)
Fertilidad/fisiología , Factor Nuclear 3-beta del Hepatocito/metabolismo , Útero/metabolismo , Animales , Implantación del Embrión/fisiología , Endometrio/metabolismo , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/genética , Ratones , Ratones Transgénicos , Miometrio/metabolismo
7.
Development ; 144(5): 876-888, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28232602

RESUMEN

GATA transcription factors are implicated in establishing cell fate during mammalian development. In early mammalian embryos, GATA3 is selectively expressed in the extraembryonic trophoblast lineage and regulates gene expression to promote trophoblast fate. However, trophoblast-specific GATA3 function is dispensable for early mammalian development. Here, using dual conditional knockout mice, we show that genetic redundancy of Gata3 with paralog Gata2 in trophoblast progenitors ensures the successful progression of both pre- and postimplantation mammalian development. Stage-specific gene deletion in trophoblasts reveals that loss of both GATA genes, but not either alone, leads to embryonic lethality prior to the onset of their expression within the embryo proper. Using ChIP-seq and RNA-seq analyses, we define the global targets of GATA2/GATA3 and show that they directly regulate a large number of common genes to orchestrate stem versus differentiated trophoblast fate. In trophoblast progenitors, GATA factors directly regulate BMP4, Nodal and Wnt signaling components that promote embryonic-extraembryonic signaling cross-talk, which is essential for the development of the embryo proper. Our study provides genetic evidence that impairment of trophoblast-specific GATA2/GATA3 function could lead to early pregnancy failure.


Asunto(s)
Factor de Transcripción GATA2/fisiología , Factor de Transcripción GATA3/fisiología , Placenta/fisiología , Células Madre/citología , Trofoblastos/citología , Animales , Diferenciación Celular , Linaje de la Célula , Implantación del Embrión , Desarrollo Embrionario , Femenino , Eliminación de Gen , Humanos , Ratones , Ratones Noqueados , Embarazo , Preñez , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...