Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38498600

RESUMEN

Angiotensin (Ang)-(1-7) is a cardioprotective peptide of the renin-angiotensin system. Pre-puberty has been considered as a later susceptible window of development and stressful factors in this life phase can induce chronic diseases in adulthood. We aimed to investigate whether the treatment with Ang-(1-7) during the pre-puberty could attenuate the development of hypertension and cardiac injury in adult spontaneously hypertensive rats (SHR). SHR were treated with Ang-(1-7) (24 µg/Kg/h) from 4 to 7 weeks of age. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography up to 17th of age. Thereafter, echocardiography was performed and the rats were euthanized for aorta reactivity assay and tissues and blood collections. Ang- (1-7) did not change the SBP and aortic reactivity but reduced the septal and posterior wall thickness, cardiomyocyte hypertrophy and fibrosis in SHR. Additionally, Ang-(1-7) reduced the gene expression of ANP and BNP, increased the metalloproteinase 9 expression, and reduced the ERK 1/2 phosphorylation. Ang-(1-7) also prevented the reduction of Mas receptor but did not change the protein expression of ACE2, ACE, AT1, and AT2. The treatment with Ang-(1-7) decreased the MDA levels and increased SOD-1 and catalase activity and protein expression of catalase. Our findings demonstrate that the treatment of SHR with Ang-(1-7) for three weeks early in life promotes beneficial effects in the heart later in life, even without altering blood pressure, through mechanisms involving the reduction of oxidative stress and ERK1/2 phosphorylation. Additionally, this study supports the pre-puberty as an important programming window.

2.
Microbes Infect ; 24(6-7): 104975, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35381358

RESUMEN

The genus Paracoccidioides comprises the species complex causing paracoccidioidomycoses (PCM). These fungi are a serious public health problem due to the long-term drug therapy, follow-up treatment, and frequent sequelae generated by the infection, such as pulmonary fibrosis. In this sense, the objective of this work was to generate bioluminescent reporter strains of Paracoccidioides spp. harboring a thermostable, red-shifted luciferase gene under the control of different constitutive promoters. The strains were generated by the integration of a species-specific codon-optimized luciferase gene upon actin or enolase promoter's control. The insertion of the constructs in Paracoccidioides brasiliensis and Paracoccidioides lutzii yeast cells were performed through Agrobacterium tumefaciens-mediated transformation. The results demonstrated the presence of several transformants harboring the luciferase gene. These transformants were further confirmed by the expression of luciferase and by the presence of the hygromycin resistance gene. Moreover, the luciferase activity could be detected in in vitro bioluminescence assays and in vivo models of infection. In general, this work presents the methodology for the construction of bioluminescent strains of Paracoccidioides spp., highlighting potential promoters and proposing an in vivo model, in which those strains could be used for the systemic study of PCM.


Asunto(s)
Paracoccidioides , Paracoccidioidomicosis , Actinas , Paracoccidioides/genética , Paracoccidioidomicosis/microbiología , Fosfopiruvato Hidratasa
3.
Fungal Biol ; 124(9): 766-780, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32883428

RESUMEN

Fungi of the genus Paracoccidioides are the etiological agents of Paracoccidioidomycosis (PCM), the most prevalent mycosis in Latin America. Paracoccidioidomycosis infection is acquired by inhalation of Paracoccidioides conidia, which have first contact with the lungs and can subsequently spread to other organs/tissues. Until now, there have been no proteomic studies focusing on this infectious particle of Paracoccidioides. In order to identify the Paracoccidioides lutzii conidia proteome, conidia were produced and purified. Proteins were characterized by use of the nanoUPLC-MSE approach. The strategy allowed us to identify a total of 242 proteins in P. lutzii conidia. In the conidia proteome, proteins were classified in functional categories such as protein synthesis, energy production, metabolism, cellular defense/virulence processes, as well as other processes that can be important for conidia survival. Through this analysis, a pool of ribosomal proteins was identified, which may be important for the initial processes of dimorphic transition. In addition, molecules related to energetic and metabolic processes were identified, suggesting a possible basal metabolism during this form of resistance of the fungus. In addition, adhesins and virulence factors were identified in the P. lutzii conidia proteome. Our results demonstrate the potential role that these molecules can play during early cell-host interaction processes, as well as the way in which these molecules are involved in environmental survival during this form of propagation.


Asunto(s)
Paracoccidioides , Proteoma , Esporas Fúngicas , Paracoccidioides/metabolismo , Esporas Fúngicas/metabolismo
4.
Fungal Genet Biol ; 144: 103446, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32822859

RESUMEN

Oxygen is fundamental to the life of aerobic organisms and is not always available to Paracoccidioides cells. During the life cycle stages, reduced oxygen levels directly affect general metabolic processes and oxygen adaptation mechanisms may play a fundamental role on fungal ability to survive under such condition. Heme proteins can bind to oxygen and participate in important biological processes. Several fungi, including Paracoccidioides, express a heme-binding globin (fungoglobin - FglA) presumable to regulate fungal adaptation to hypoxia. However, the characterization of fungoglobin in Paracoccidioides spp. has not yet been performed. In this study, we predicted the structure of fungoglobin and determined its level of expression during hypoxic-mimetic conditions. Genomic screening revealed that the fungoglobin gene is conserved in all species of the Paracoccidioides genus. Molecular modeling showed biochemical and biophysical characteristics that support the hypothesis that FglA binds to the heme group and oxygen as well. The fungoglobin transcript and proteins are expressed at higher levels at the early treatment time, remaining elevated while oxygen is limited. A P. brasiliensis fglA knockdown strain depicted reduced growth in hypoxia indicating that this protein can be essential for growth at low oxygen. Biochemical analysis confirmed the binding of fungoglobin to heme. Initial analyzes were carried out to establish the relationship between FlglA and iron metabolism. The FglA transcript was up regulated in pulmonary infection, suggesting its potential role in the disease establishment. We believe that this study can contribute to the understanding of fungal biology and open new perspectives for scientific investigations.


Asunto(s)
Proteínas Fúngicas/genética , Hemo/genética , Hemoproteínas/genética , Paracoccidioides/genética , Aerobiosis/genética , Hipoxia de la Célula/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Hemo/metabolismo , Hemoproteínas/metabolismo , Oxígeno/metabolismo , Paracoccidioides/metabolismo
5.
Microb Pathog ; 149: 104281, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32585293

RESUMEN

Paracoccidioides complex is a genus that comprises pathogenic fungi which are responsible by systemic disease Paracoccidioidomycosis. In host tissues, pathogenic fungi need to acquire nutrients in order to survive, making the uptake of nitrogen essential for their establishment and dissemination. Nitrogen utilization is employed by the alleviation of Nitrogen Catabolite Repression (NCR) which ensures the use of non-preferential or alternative nitrogen sources when preferential sources are not available. NCR is controlled by GATA transcription factors which act through GATA binding sites on promoter regions in NCR-sensitive genes. This process is responsible for encoding proteins involved with the scavenge, uptake and catabolism of a wide variety of non-preferential nitrogen sources. In this work, we predict the existence of AreA GATA transcription factor and feature the zinc finger domain by three-dimensional structure in Paracoccidioides. Furthermore, we demonstrate the putative genes involved with NCR response by means of in silico analysis. The gene expression profile under NCR conditions was evaluated. Demonstrating that P. lutzii supported transcriptional regulation and alleviated NCR in non-preferential nitrogen-dependent medium. The elucidation of NCR in members of Paracoccidioides complex will provide new knowledge about survival, dissemination and virulence for these pathogens with regard to nitrogen-scavenging strategies in the interactions of host-pathogens.


Asunto(s)
Represión Catabólica , Paracoccidioides , Regulación Fúngica de la Expresión Génica , Nitrógeno/metabolismo , Paracoccidioides/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...