RESUMEN
Light-driven asymmetric photocatalysis represents a straightforward approach in modern organic chemistry. In comparison to the homogeneous one, heterogeneous asymmetric photocatalysis has the advantages of easy catalyst separation, recovery, and reuse, thus being cost- and time-effective. Here, we demonstrate how plasmon-active centers (gold nanoparticles - AuNPs) allow visible light triggering of chiral catalyst (proline) in model aldol reaction between acetone and benzaldehyde. The metal-organic framework UiO-66-NH2 was used as an advanced host platform for the loading of proline and AuNPs and their stabilization in spatial proximity. Aldol reactions were carried out at a low temperature (-20 °C) under light illumination which resulted in 91% ee with a closed-to-quantitative yield, 4.5 times higher than that without light (i.e. in the absence of plasmon triggering). A set of control experiments and quantum chemical modeling revealed that the plasmon assistance proceeds through hot electron excitation followed by an interaction with an enamine with the formation of anion radical species. We also demonstrated the high stability of the proposed system in multiple catalytic cycles without leaching metal ions, which makes our approach especially promising for heterogeneous asymmetric photocatalysis.
RESUMEN
Surface-enhanced Raman spectroscopy (SERS) is an analytical method with high potential in the field of medicine. The design of SERS substrates, based on specific morphology and/or chemical modification, allow the recognition of the presence of specific analytes with precision close to a single-molecule detection limit. However, the SERS analysis of real samples is significantly complicated by the presence of a large number of "minor" molecules that can shield the signal from the target analyte and make it impossible to determine it in practice. In this work, an advanced SERS approach was used for the detection of cancer-related miRNA-21 in blood plasma, used as a molecular model background. The approach was based on the combination of the biomimetic plasmon-active SERS substrate, its tuned surface chemistry and advanced SERS data analysis, making use of artificial machine learning. In the first step, biomimetic SERS substrates were created using a butterfly wing as a starting template. The substrates were covered by thin Au layer and covalently grafted with hydrophobic chemical moieties to introduce superhydrophobic and water-adhesive properties. The self-concentration of the analyte on the substrates was achieved by minimizing the contact area between the analyte drop and the substrate, which is facilitated by surface superhydrophobicity and additionally enhanced by drop evaporation on the flipped over substrate. Due to the presence of cancer miRNA and blood plasma background, the measured SERS spectra represent a complex of interfering peaks. Thus, their interpretation was carried out using a specially trained machine learning model. As a result, reliable and repeatable quantitative detection of miRNAs below the femtomolar level (up to 10-16 M) on the background of human blood plasma becomes possible.
Asunto(s)
MicroARNs , Espectrometría Raman , Humanos , Animales , Plasma , Biomimética , Aprendizaje AutomáticoRESUMEN
The action of fuel cells with proton-exchanged membranes (PEMs) requires the implementation of the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) on the opposite sides of the PEMs. Recently, based on several models of electrochemical reactions a significant decrease in the thermodynamic activation barrier of both reactions under plasmon assistance was reported. In this work, we propose the design of a PEM fuel cell with a plasmon-active catalytic surface providing plasmonic triggering and enhancement of fuel cell efficiency. In particular, we deposited bimetallic (Au@Pt) nanostructures on the PEM surface and integrated them into the fuel cell design. Plasmon excitation occurs on the Au nanostructures under light illumination at the corresponding NIR wavelength, while the Pt shell is responsible for the introduction of catalytic sites. Light illumination results in a significant enhancement of the electric current produced by the fuel cell. In particular, the electric current increased several times. Control experiments indicated that the observed enhancement takes place only when the light wavelength is in compliance with the plasmon absorption band and the contribution from thermal effects is negligible. The present approach for the introduction of plasmon assistance into the design of advanced fuel cells makes them suitable for increasing the fuel cell efficiency under sunlight.
RESUMEN
Functional plasmonic fiber for detection and on-line monitoring of organophosphorus pesticides in water or model soil samples is described. The appearance of the plasmon absorption band was realized through the deposition of a thin gold layer on the naked core of multimode optical fiber. The metalorganic frameworks (MOF-5) layer was deposited on the gold surface for the introduction of a high affinity towards the target pesticides. The MOF-5 layer affords the extraction of pesticides and their concentration primarily in the "plasmon evanescent wave" space, allowing the detection by the shift of plasmon absorption band. The growth of MOF-5 layer was confirmed using the Raman, XPS and XRD measurements. The entrapping of pesticides was checked using the Raman spectroscopy and ellipsometry, which also indicate the corresponding changes of MOF-5 refractive index. The series of further experiments demonstrate the applicability of proposed fiber sensor for detection of pesticides in soil without the false signals from surrounding media. The main advantages of proposed sensor can be attributed to simplicity, high sensitivity, low cost and the absence of organic solvents for the probe treatment.
RESUMEN
In this work, we proposed the functionalization of a surface plasmon-polariton (SPP)-supported gold grating surface with the metal-organic framework (MOF-5) for sensitive, selective and reproducible surface-enhanced Raman scattering (SERS) detection of organophosphorus pesticides. Homogeneous distribution of plasmon intensity along the Au grating surface ensures the high reproducibility of SERS results (deviation of Raman peak intensity does not exceed the 4% along the sample). The surface-assisted growth of thin MOF-5 film was accomplished in two steps procedure: (i) covalent grafting by 4-carboxyphenyl groups and (ii) the immersion of samples in the mother liquid of MOF-5. Proposed SERS chip proved itself to be a perfect analytical probe for the detection of organophosphorus pesticides with high reliability and low detection limit up to 10-12â¯M. Moreover, selective detection and recognition of several relevant organic contaminants (azo-dye, mycotoxin, and pesticide) from the simulated soil was successfully demonstrated. All SERS measurements were performed using portable Raman spectrometer and can easily be expanded to environmental conditions. Our work combines the high affinity of organic contaminants to the MOF-5 with excellent plasmonic excitation on the surface plasmon-polariton supported structure and shows the way to the realization of closed-to-ideal analytical SERS chip.
RESUMEN
Colloid lithography represents a simple and efficient method for creation of a large-scale template for subsequent surface patterning, deposition of regular metal nanostructures, or periodical surface structures. However, this method is significantly restricted by its ability to create only a limited number of structures with confined geometry and symmetry features. To overcome this limitation, different techniques, such as plasma treatment or tilting angle metal deposition, have been proposed. In this paper, an alternative method based on the vapor annealing of ordered single polystyrene (PS) microspheres layer, followed by the surface grafting with arenediazonium tosylates is proposed. Application of vapor treatment before surface grafting allows effective control of the area screened by PS microspheres. Pristine and vapor-annealed microsphere arrays on the gold substrate were electrochemically modified using ADTs. Subsequent removal of the PS microsphere mask enabled to prepare well-defined nanostructures with controllable surface features. In particular, prepared periodic arrangements were achieved by the grafting of OFGs to the empty interspaces between nanopore arrays. The process of sample preparation was controlled, and the properties of prepared structures were characterized by various techniques, including atomic force microscopy (AFM), conductive AFM, scanning electron microscopy energy-dispersive X-ray spectrometry, Raman spectroscopy, and voltammetry.