Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4354, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778013

RESUMEN

Natural ecosystems store large amounts of carbon globally, as organisms absorb carbon from the atmosphere to build large, long-lasting, or slow-decaying structures such as tree bark or root systems. An ecosystem's carbon sequestration potential is tightly linked to its biological diversity. Yet when considering future projections, many carbon sequestration models fail to account for the role biodiversity plays in carbon storage. Here, we assess the consequences of plant biodiversity loss for carbon storage under multiple climate and land-use change scenarios. We link a macroecological model projecting changes in vascular plant richness under different scenarios with empirical data on relationships between biodiversity and biomass. We find that biodiversity declines from climate and land use change could lead to a global loss of between 7.44-103.14 PgC (global sustainability scenario) and 10.87-145.95 PgC (fossil-fueled development scenario). This indicates a self-reinforcing feedback loop, where higher levels of climate change lead to greater biodiversity loss, which in turn leads to greater carbon emissions and ultimately more climate change. Conversely, biodiversity conservation and restoration can help achieve climate change mitigation goals.


Asunto(s)
Biodiversidad , Biomasa , Secuestro de Carbono , Carbono , Cambio Climático , Carbono/metabolismo , Ecosistema , Conservación de los Recursos Naturales/métodos , Plantas/metabolismo
2.
Med Phys ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507254

RESUMEN

BACKGROUND: Diffusing alpha-emitters radiation therapy ("Alpha-DaRT") is a new method for treating solid tumors with alpha particles, relying on the release of the short-lived alpha-emitting daughter atoms of radium-224 from interstitial sources inserted into the tumor. Alpha-DaRT tumor dosimetry is governed by the spread of radium's progeny around the source, as described by an approximate framework called the "diffusion-leakage model". The most important model parameters are the diffusion lengths of radon-220 and lead-212, and their estimation is therefore essential for treatment planning. PURPOSE: Previous works have provided initial estimates for the dominant diffusion length, by measuring the activity spread inside mice-borne tumors several days after the insertion of an Alpha-DaRT source. The measurements, taken when lead-212 was in secular equilibrium with radium-224, were interpreted as representing the lead-212 diffusion length. The aim of this work is to provide first experimental estimates for the diffusion length of radon-220, using a new methodology. METHODS: The diffusion length of radon-220 was estimated from autoradiography measurements of histological sections taken from 24 mice-borne subcutaneous tumors of five different types. Unlike previous studies, the source dwell time inside the tumor was limited to 30 min, to prevent the buildup of lead-212. To investigate the contribution of potential non-diffusive processes, experiments were done in two sets: fourteen in vivo tumors, where during the treatment the tumors were still carried by the mice with active blood supply, and 10 ex-vivo tumors, where the tumors were excised before source insertion and kept in a medium at 37 ∘ C $37^\circ {\text{C}}$ with the source inside. RESULTS: The measured diffusion lengths of radon-220, extracted by fitting the recorded activity pattern up to 1.5 mm from the source, lie in the range 0.25 - 0.6 mm ${0.25-0.6}\nobreakspace {\text{mm}}$ , with no significant difference between the average values measured in in-vivo and ex-vivo tumors: L R n i n - v i v o = 0.40 ± 0.08 mm $L_{Rn}^{in-vivo}=0.40{\pm }0.08\nobreakspace {\text{mm}}$ versus L R n e x - v i v o = 0.39 ± 0.07 mm $L_{Rn}^{ex-vivo}=0.39{\pm }0.07\nobreakspace {\text{mm}}$ . However, in-vivo tumors display an enhanced spread of activity 2-3 mm away from the source. This effect is not explained by the current model and is much less pronounced in ex-vivo tumors. CONCLUSIONS: The average measured radon-220 diffusion lengths in both in-vivo and ex-vivo tumors are consistent with published data on the diffusion length of radon in water and lie close to the upper limit of the previously estimated range of 0.2 - 0.4 mm $0.2-0.4\nobreakspace {\text{mm}}$ . The observation that close to the source there is no apparent difference between in-vivo and ex-vivo tumors, and the good agreement with the theoretical model in this region suggest that the spread of radon-220 is predominantly diffusive in this region. The departure from the model prediction in in-vivo tumors at large radial distances may hint at potential vascular contribution, which will be the subject of future works.

3.
Sustain Sci ; : 1-20, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37363310

RESUMEN

To halt further destruction of the biosphere, most people and societies around the globe need to transform their relationships with nature. The internationally agreed vision under the Convention of Biological Diversity-Living in harmony with nature-is that "By 2050, biodiversity is valued, conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet and delivering benefits essential for all people". In this context, there are a variety of debates between alternative perspectives on how to achieve this vision. Yet, scenarios and models that are able to explore these debates in the context of "living in harmony with nature" have not been widely developed. To address this gap, the Nature Futures Framework has been developed to catalyse the development of new scenarios and models that embrace a plurality of perspectives on desirable futures for nature and people. In this paper, members of the IPBES task force on scenarios and models provide an example of how the Nature Futures Framework can be implemented for the development of illustrative narratives representing a diversity of desirable nature futures: information that can be used to assess and develop scenarios and models whilst acknowledging the underpinning value perspectives on nature. Here, the term illustrative reflects the multiple ways in which desired nature futures can be captured by these narratives. In addition, to explore the interdependence between narratives, and therefore their potential to be translated into scenarios and models, the six narratives developed here were assessed around three areas of the transformative change debate, specifically, (1) land sparing vs. land sharing, (2) Half Earth vs. Whole Earth conservation, and (3) green growth vs. post-growth economic development. The paper concludes with an assessment of how the Nature Futures Framework could be used to assist in developing and articulating transformative pathways towards desirable nature futures. Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-023-01316-1.

4.
Bioscience ; 72(11): 1062-1073, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36506699

RESUMEN

Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity-ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals.

5.
Nucl Med Biol ; 114-115: 86-98, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36270074

RESUMEN

Acute respiratory distress syndrome (ARDS) is accompanied by a dramatic increase in lung hyaluronic acid (HA), leading to a dose-dependent reduction of pulmonary oxygenation. This pattern is associated with severe infections, such as COVID-19, and other important lung injury etiologies. HA actively participates in molecular pathways involved in the cytokine storm of COVID-19-induced ARDS. The objective of this study was to evaluate an imaging approach of radiolabeled HA for assessment of dysregulated HA deposition in mouse models with skin inflammation and lipopolysaccharide (LPS)-induced ARDS using a novel portable intensified Quantum Imaging Detector (iQID) gamma camera system. METHODS: HA of 10 kDa molecular weight (HA10) was radiolabeled with 125I and 99mTc respectively to produce [125I]I-HA10 and [99mTc]Tc-HA10, followed by comparative studies on stability, in vivo biodistribution, and uptake at inflammatory skin sites in mice with 12-O-tetradecanoylphorbol-13-acetate (TPA)-inflamed ears. [99mTc]Tc-HA10 was used for iQID in vivo dynamic imaging of mice with ARDS induced by intratracheal instillation of LPS. RESULTS: [99mTc]Tc-HA10 and [125I]I-HA10 had similar biodistribution and localization at inflammatory sites. [99mTc]Tc-HA10 was shown to be feasible in measuring skin injury and monitoring skin wound healing. [99mTc]Tc-HA10 dynamic pulmonary images yielded good visualization of radioactive uptake in the lungs. There was significantly increased lung uptake and slower lung washout in mice with LPS-induced ARDS than in control mice. Postmortem biodistribution measurement of [99mTc]TcHA10 (%ID/g) was 11.0 ± 3.9 vs. 1.3 ± 0.3 in the ARDS mice (n = 6) and controls (n = 6) (P < 0.001), consistent with upregulated HA expression as determined by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) staining. CONCLUSIONS: [99mTc]Tc-HA10 is promising as a biomarker for evaluating HA dysregulation that contributes to pulmonary injury in ARDS. Rapid iQID imaging of [99mTc]Tc-HA10 clearance from injured lungs may provide a functional template for timely assessment and quantitative monitoring of pulmonary pathophysiology and intervention in ARDS.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Animales , Ratones , Ácido Hialurónico , Distribución Tisular , Lipopolisacáridos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen
6.
Sci Rep ; 12(1): 17934, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289434

RESUMEN

Targeted radiopharmaceutical therapy with alpha-particle emitters (αRPT) is advantageous in cancer treatment because the short range and high local energy deposition of alpha particles enable precise radiation delivery and efficient tumor cell killing. However, these properties create sub-organ dose deposition effects that are not easily characterized by direct gamma-ray imaging (PET or SPECT). We present a computational procedure to determine the spatial distribution of absorbed dose from alpha-emitting radionuclides in tissues using digital autoradiography activity images from an ionizing-radiation quantum imaging detector (iQID). Data from 211At-radioimmunotherapy studies for allogeneic hematopoietic cell transplantation in a canine model were used to develop these methods. Nine healthy canines were treated with 16.9-30.9 MBq 211At/mg monoclonal antibodies (mAb). Lymph node biopsies from early (2-5 h) and late (19-20 h) time points (16 total) were obtained, with 10-20 consecutive 12-µm cryosections extracted from each and imaged with an iQID device. iQID spatial activity images were registered within a 3D volume for dose-point-kernel convolution, producing dose-rate maps. The accumulated absorbed doses for high- and low-rate regions were 9 ± 4 Gy and 1.2 ± 0.8 Gy from separate dose-rate curves, respectively. We further assess uptake uniformity, co-registration with histological pathology, and requisite slice numbers to improve microscale characterization of absorbed dose inhomogeneities in αRPT.


Asunto(s)
Partículas alfa , Radiofármacos , Animales , Perros , Partículas alfa/uso terapéutico , Autorradiografía , Radiofármacos/uso terapéutico , Radiometría , Radioisótopos/uso terapéutico , Anticuerpos Monoclonales
7.
Mol Cancer Ther ; 21(12): 1835-1845, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36129807

RESUMEN

Human epidermal growth factor receptor type 2 (HER2) is overexpressed in various cancers; thus, HER2-targeting single-domain antibodies (sdAb) could offer a useful platform for radioimmunotherapy. In this study, we optimized the labeling of an anti-HER2-sdAb with the α-particle-emitter 225Ac through a DOTA-derivative. The formed radioconjugate was tested for binding affinity, specificity and internalization properties, whereas cytotoxicity was evaluated by clonogenic and DNA double-strand-breaks assays. Biodistribution studies were performed in mice bearing subcutaneous HER2pos tumors to estimate absorbed doses delivered to organs and tissues. Therapeutic efficacy and potential toxicity were assessed in HER2pos intraperitoneal ovarian cancer model and in healthy C57Bl/6 mice. [225Ac]Ac-DOTA-2Rs15d exhibited specific cell uptake and cell-killing capacity in HER2pos cells (EC50 = 3.9 ± 1.1 kBq/mL). Uptake in HER2pos lesions peaked at 3 hours (9.64 ± 1.69% IA/g), with very low accumulation in other organs (<1% IA/g) except for kidneys (11.69 ± 1.10% IA/g). α-camera imaging presented homogeneous uptake of radioactivity in tumors, although heterogeneous in kidneys, with a higher signal density in cortex versus medulla. In mice with HER2pos disseminated tumors, repeated administration of [225Ac]Ac-DOTA-2Rs15d significantly prolonged survival (143 days) compared to control groups (56 and 61 days) and to the group treated with HER2-targeting mAb trastuzumab (100 days). Histopathologic evaluation revealed signs of kidney toxicity after repeated administration of [225Ac]Ac-DOTA-2Rs15d. [225Ac]Ac-DOTA-2Rs15d efficiently targeted HER2pos cells and was effective in treatment of intraperitoneal disseminated tumors, both alone and as an add-on combination with trastuzumab, albeit with substantial signs of inflammation in kidneys. This study warrants further development of [225Ac]Ac-DOTA-2Rs15d.


Asunto(s)
Neoplasias , Anticuerpos de Dominio Único , Femenino , Animales , Humanos , Ratones , Anticuerpos de Dominio Único/química , Actinio/química , Distribución Tisular , Línea Celular Tumoral , Trastuzumab/farmacología , Trastuzumab/uso terapéutico
8.
Appl Radiat Isot ; 166: 109348, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32961524

RESUMEN

Characterization of the homogeneity of thin actinide deposits prior to and after irradiation is important to ensure measurement of high-quality nuclear data in nuclear physics experiments. Autoradiography is frequently used to assess homogeneity, but geometric blur from source thickness, particle range, and source-detector gap can significantly degrade image resolution and introduce bias when estimating source uniformity and activity. We establish a method for minimizing geometric blur using a new autoradiography imaging technique with microcapillary array collimators and a new method to characterize the homogeneity of an imaged deposit. Also, we demonstrate that beta-/gamma-blind imaging is possible for alpha-particle autoradiography with ZnS:Ag scintillators and the ionizing-radiation quantum imaging detector (iQID), a digital autoradiography system with intrinsic spatial resolutions up to 20 µm for alphas. This iQID imaging approach can successfully discriminate alphas in the presence of a beta-gamma source in samples containing >106 dynamic range in activity. We apply this feature to characterize the uniformity of plutonium deposits before and after accelerator irradiation in the presence of a large beta-gamma background.

9.
Mol Pharm ; 17(9): 3553-3566, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32787284

RESUMEN

Targeted alpha-particle therapy (TAT) might be a relevant therapeutic strategy to circumvent resistance to conventional therapies in the case of HER2-positive metastatic cancer. Single-domain antibody fragments (sdAb) are promising vehicles for TAT because of their excellent in vivo properties, high target affinity, and fast clearance kinetics. This study combines the cytotoxic α-particle emitter bismuth-213 (213Bi) and HER2-targeting sdAbs. The in vitro specificity, affinity, and cytotoxic potency of the radiolabeled complex were analyzed on HER2pos cells. Its in vivo biodistribution through serial dissections and via Cherenkov and micro-single-photon emission computed tomography (CT)/CT imaging was evaluated. Finally, the therapeutic efficacy and potential associated toxicity of [213Bi]Bi-DTPA-2Rs15d were evaluated in a HER2pos tumor model that manifests peritoneal metastasis. In vitro, [213Bi]Bi-DTPA-2Rs15d bound HER2pos cells in a HER2-specific way. In mice, high tumor uptake was reached already 15 min after injection, and extremely low uptake values were observed in normal tissues. Co-infusion of gelofusine resulted in a 2-fold reduction in kidney uptake. Administration of [213Bi]Bi-DTPA-2Rs15d alone and in combination with trastuzumab resulted in a significant increase in median survival. We describe for the very first time the successful labeling of an HER2-sdAb with the α-emitter 213Bi, and after intravenous administration, revealing high in vivo stability and specific accumulation in target tissue and resulting in an increased median survival of these mice especially in combination with trastuzumab. These results indicate the potential of [213Bi]Bi-DTPA-sdAb as a new radioconjugate for TAT, alone and as an add-on to trastuzumab for the treatment of HER2pos metastatic cancer.


Asunto(s)
Bismuto/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Radioisótopos/farmacología , Radiofármacos/farmacología , Anticuerpos de Dominio Único/farmacología , Animales , Células CHO , Línea Celular , Línea Celular Tumoral , Cricetulus , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/metabolismo , Receptor ErbB-2/metabolismo , Distribución Tisular , Trastuzumab/farmacología
10.
Radiat Environ Biophys ; 59(1): 29-62, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31863162

RESUMEN

At the tissue level, energy deposition in cells is determined by the microdistribution of alpha-emitting radionuclides in relation to sensitive target cells. Furthermore, the highly localized energy deposition of alpha particle tracks and the limited range of alpha particles in tissue produce a highly inhomogeneous energy deposition in traversed cell nuclei. Thus, energy deposition in cell nuclei in a given tissue is characterized by the probability of alpha particle hits and, in the case of a hit, by the energy deposited there. In classical microdosimetry, the randomness of energy deposition in cellular sites is described by a stochastic quantity, the specific energy, which approximates the macroscopic dose for a sufficiently large number of energy deposition events. Typical examples of the alpha-emitting radionuclides in internal microdosimetry are radon progeny and plutonium in the lungs, plutonium and americium in bones, and radium in targeted radionuclide therapy. Several microdosimetric approaches have been proposed to relate specific energy distributions to radiobiological effects, such as hit-related concepts, LET and track length-based models, effect-specific interpretations of specific energy distributions, such as the dual radiation action theory or the hit-size effectiveness function, and finally track structure models. Since microdosimetry characterizes only the initial step of energy deposition, microdosimetric concepts are most successful in exposure situations where biological effects are dominated by energy deposition, but not by subsequently operating biological mechanisms. Indeed, the simulation of the combined action of physical and biological factors may eventually require the application of track structure models at the nanometer scale.


Asunto(s)
Partículas alfa , Radioisótopos , Radiometría/métodos , Animales , Huesos , Humanos , Pulmón , Radioisótopos/uso terapéutico
11.
Blood ; 134(15): 1247-1256, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31395601

RESUMEN

Minimal residual disease (MRD) has become an increasingly prevalent and important entity in multiple myeloma (MM). Despite deepening responses to frontline therapy, roughly 75% of MM patients never become MRD-negative to ≤10-5, which is concerning because MRD-negative status predicts significantly longer survival. MM is highly heterogeneous, and MRD persistence may reflect survival of isolated single cells and small clusters of treatment-resistant subclones. Virtually all MM clones are exquisitely sensitive to radiation, and the α-emitter astatine-211 (211At) deposits prodigious energy within 3 cell diameters, which is ideal for eliminating MRD if effectively targeted. CD38 is a proven MM target, and we conjugated 211At to an anti-CD38 monoclonal antibody to create an 211At-CD38 therapy. When examined in a bulky xenograft model of MM, single-dose 211At-CD38 at 15 to 45 µCi at least doubled median survival of mice relative to untreated controls (P < .003), but no mice achieved complete remission and all died within 75 days. In contrast, in a disseminated disease model designed to reflect low-burden MRD, 3 studies demonstrated that single-dose 211At-CD38 at 24 to 45 µCi produced sustained remission and long-term survival (>150 days) for 50% to 80% of mice, where all untreated mice died in 20 to 55 days (P < .0001). Treatment toxicities were transient and minimal. These data suggest that 211At-CD38 offers the potential to eliminate residual MM cell clones in low-disease-burden settings, including MRD. We are optimistic that, in a planned clinical trial, addition of 211At-CD38 to an autologous stem cell transplant (ASCT) conditioning regimen may improve ASCT outcomes for MM patients.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Astato/uso terapéutico , Inmunoconjugados/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Neoplasia Residual/tratamiento farmacológico , ADP-Ribosil Ciclasa 1/análisis , Astato/administración & dosificación , Astato/farmacocinética , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/farmacocinética , Masculino , Mieloma Múltiple/patología , Neoplasia Residual/patología
12.
Health Phys ; 117(2): 179-186, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30299339

RESUMEN

Digital autoradiography with the ionizing radiation quantum imaging detector is used at the US Transuranium and Uranium Registries for visualizing the microdistribution of alpha particles from Am and quantifying the activity. The radionuclide spatial distribution was investigated within cortical and trabecular regions of bone samples from US Transuranium and Uranium Registries case 0846. Multiple specimens from the humerus proximal end, humerus proximal shaft, and clavicle acromial end were embedded in plastic, and 100-µm-thick sections were taken and imaged using the ionizing radiation quantum imaging detector. The detector images were superimposed on the anatomical structure images to visualize Am distribution in cortical bone, trabecular bone, and trabecular spongiosa. Activity concentration ratios were used to characterize Am distribution within different bone regions. The trabecular-to-cortical bone and trabecular-spongiosa-to-cortical bone activity concentration ratios were quantified in both humerus and clavicle. The ionizing radiation quantum imaging detector results were in agreement with those obtained from radiochemical analysis of the remaining bone specimens. The results were compared with International Commission on Radiological Protection default biokinetic model predictions. Digital autoradiography was proven to be an effective method for microscale heterogeneous distribution studies where traditional counting methods are impractical.


Asunto(s)
Americio/farmacocinética , Autorradiografía/instrumentación , Autorradiografía/métodos , Huesos/metabolismo , Exposición Profesional/análisis , Huesos/efectos de la radiación , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Dosis de Radiación , Análisis Espacial , Donantes de Tejidos
13.
Semin Nucl Med ; 48(4): 367-376, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29852946

RESUMEN

Promising therapies are being developed or are in early-stage clinical trials that employ the use of alpha- and beta-emitting radionuclides to cure hematologic malignancies. However, these targeted radionuclide therapies have not yet met their expected potential for cancer treatment. A primary reason is lack of biodistribution, dosimetry, and dose-response information at cellular levels, which are directly related to optimal targeting, achieving a requisite therapeutic dose, and assessing the safety profile in normal organs and tissues. The current set of imaging tools, such as film autoradiography, scintigraphy, and SPECT/CT, available to researchers and clinicians do not allow the effective assessment of radiation absorbed dose distributions at cellular levels because resolutions are poor, measurement and analytical times are long, and the spatial resolutions are low-generally resulting in poor signal-to-noise ratios. Recently, new radiation digital autoradiography imaging tools have been developed that promise to address these challenges. They include scintillation-, gaseous-, and semiconductor-based radiation-detection technologies that localize the emission location of charged particles on an event-by-event basis at resolutions up to 20 µm FWHM for alpha and beta emitters. These imaging systems allow radionuclide activity concentrations to be quantified to unprecedented levels (mBq/µg) and provide real-time imaging and simultaneous imaging capabilities of both high- and low-activity samples without dynamic range limitations that plague traditional autoradiography. Additionally, large-area imagers are available (>20 × 20 cm2) to accommodate high-throughput imaging studies. This article reviews the various detector classes and their associated performance trade-offs to provide researchers with an overview of the current technologies available for selecting an optimal detector configuration to meet imaging requirement needs.


Asunto(s)
Partículas alfa , Autorradiografía/instrumentación , Partículas beta , Diagnóstico por Imagen/instrumentación
14.
J Hazard Mater ; 341: 238-247, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28787657

RESUMEN

A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This work focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon entering the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ∼0.08wt% of the total waste form mass. The observed diffusion (Dobs) of Tc decreased from 4.6±0.2×10-12cm2/s for Cast Stone that did not contain a getter to 5.4±0.4×10-13cm2/s for KMS-2 containing Cast Stone. It was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc Dobs when using the KMS-2.

15.
PLoS One ; 12(10): e0186370, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29023595

RESUMEN

This work presents a comparison of three autoradiography techniques for imaging biological samples contaminated with actinides: emulsion-based, plastic-based autoradiography and a quantitative digital technique, the iQID camera, based on the numerical analysis of light from a scintillator screen. In radiation toxicology it has been important to develop means of imaging actinide distribution in tissues as these radionuclides may be heterogeneously distributed within and between tissues after internal contamination. Actinide distribution determines which cells are exposed to alpha radiation and is thus potentially critical for assessing absorbed dose. The comparison was carried out by generating autoradiographs of the same biological samples contaminated with actinides with the three autoradiography techniques. These samples were cell preparations or tissue sections collected from animals contaminated with different physico-chemical forms of actinides. The autoradiograph characteristics and the performances of the techniques were evaluated and discussed mainly in terms of acquisition process, activity distribution patterns, spatial resolution and feasibility of activity quantification. The obtained autoradiographs presented similar actinide distribution at low magnification. Out of the three techniques, emulsion autoradiography is the only one to provide a highly-resolved image of the actinide distribution inherently superimposed on the biological sample. Emulsion autoradiography is hence best interpreted at higher magnifications. However, this technique is destructive for the biological sample. Both emulsion- and plastic-based autoradiography record alpha tracks and thus enabled the differentiation between ionized forms of actinides and oxide particles. This feature can help in the evaluation of decorporation therapy efficacy. The most recent technique, the iQID camera, presents several additional features: real-time imaging, separate imaging of alpha particles and gamma rays, and alpha activity quantification. The comparison of these three autoradiography techniques showed that they are complementary and the choice of the technique depends on the purpose of the imaging experiment.


Asunto(s)
Autorradiografía/métodos , Elementos de Series Actinoides/química , Partículas alfa , Animales , Autorradiografía/instrumentación , Pulmón/patología , Músculo Esquelético/patología , Ratas , Piel/patología
16.
Int J Radiat Biol ; 93(6): 607-616, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28276896

RESUMEN

PURPOSE: To evaluate skin penetration and retention of americium (Am) and plutonium (Pu), in different chemical forms relevant to the nuclear industry and to treatment by chelation. MATERIALS AND METHODS: Percutaneous penetration of different Am and Pu forms were evaluated using viable pig skin with the Franz cell diffusion system. The behavior of the complex Pu-tributyl phosphate (Pu-TBP), Am or Pu complexed to the chelator Diethylene triamine pentaacetic acid (DTPA) and the effect of dimethyl sulfoxide (DMSO) was assessed. Radioactivity was measured in skin and receiver compartments. Three approaches were used to visualize activity in skin including the recent iQID technique for quantification. RESULTS: Transfer of Am was 24-fold greater than Pu and Pu-TBP complex penetration was enhanced by 500-fold. Actinide-DTPA transfer was greater than the Am or Pu alone (17-fold and 148-fold, respectively). The stratum corneum retained the majority of activity in all cases and both DMSO and TBP enhanced skin retention of Am and Pu, respectively. Histological and bioimaging data confirmed these results and the iQID camera allowed the quantification of skin activity. CONCLUSIONS: Skin penetration and fixation profiles are different depending on the chemical actinide form. Altered behavior of Pu-TBP and actinide-DTPA complexes reinforces the need to address decontamination protocols.


Asunto(s)
Elementos de Series Actinoides/farmacocinética , Quelantes/administración & dosificación , Absorción Cutánea/fisiología , Piel/efectos de los fármacos , Piel/metabolismo , Solventes/administración & dosificación , Absorción de Radiación/efectos de los fármacos , Absorción de Radiación/fisiología , Administración Tópica , Animales , Terapia por Quelación/métodos , Descontaminación/métodos , Técnicas In Vitro , Absorción Cutánea/efectos de los fármacos , Porcinos , Distribución Tisular/efectos de los fármacos
17.
Glob Chang Biol ; 23(7): 2537-2553, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28173628

RESUMEN

Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.


Asunto(s)
Cambio Climático , Ecosistema , Clima , Predicción
18.
J Nucl Med ; 56(11): 1766-73, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26338894

RESUMEN

UNLABELLED: α-radioimmunotherapy targeting CD45 may substitute for total-body irradiation in hematopoietic cell transplantation (HCT) preparative regimens for lymphoma. Our goal was to optimize the anti-CD45 monoclonal antibody (mAb; CA12.10C12) protein dose for (211)At-radioimmunotherapy, extending the analysis to include intraorgan (211)At activity distribution and α-imaging-based small-scale dosimetry, along with immunohistochemical staining. METHODS: Eight normal dogs were injected with either a 0.75 (n = 5) or 1.00 (n = 3) mg/kg dose of (211)At-B10-CA12.10C12 (11.5-27.6 MBq/kg). Two were euthanized and necropsied 19-22 h after injection, and 6 received autologous HCT 3 d after (211)At-radioimmunotherapy, after lymph node and bone marrow biopsies at 2-4 and/or 19 h after injection. Blood was sampled to study toxicity and clearance; CD45 targeting was evaluated by flow cytometry. (211)At localization and small-scale dosimetry were assessed using two α-imaging systems: an α-camera and an ionizing-radiation quantum imaging detector (iQID) camera. RESULTS: (211)At uptake was highest in the spleen (0.31-0.61% injected activity [%IA]/g), lymph nodes (0.02-0.16 %IA/g), liver (0.11-0.12 %IA/g), and marrow (0.06-0.08 %IA/g). Lymphocytes in blood and marrow were efficiently targeted using either mAb dose. Lymph nodes remained unsaturated but displayed targeted (211)At localization in T lymphocyte-rich areas. Absorbed doses to blood, marrow, and lymph nodes were estimated at 3.1, 2.4, and 3.4 Gy/166 MBq, respectively. All transplanted dogs experienced transient hepatic toxicity. Liver enzyme levels were temporarily elevated in 5 of 6 dogs; one treated with 1.00 mg mAb/kg developed ascites and was euthanized 136 d after HCT. CONCLUSION: (211)At-anti-CD45 radioimmunotherapy with 0.75 mg mAb/kg efficiently targeted blood and marrow without severe toxicity. Dosimetry calculations and observed radiation-induced effects indicated that sufficient (211)At-B10-CA12.10C12 localization was achieved for efficient conditioning for HCT.


Asunto(s)
Astato/farmacocinética , Trasplante de Células Madre Hematopoyéticas/métodos , Antígenos Comunes de Leucocito , Radioinmunoterapia/métodos , Radiofármacos/farmacocinética , Partículas alfa , Animales , Ascitis/diagnóstico por imagen , Astato/efectos adversos , Biopsia , Médula Ósea/diagnóstico por imagen , Perros , Sistemas de Liberación de Medicamentos , Inmunohistoquímica , Ganglios Linfáticos/diagnóstico por imagen , Radiometría , Cintigrafía , Radiofármacos/efectos adversos , Bazo/diagnóstico por imagen , Linfocitos T/diagnóstico por imagen , Distribución Tisular
19.
Med Phys ; 42(7): 4094-105, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26133610

RESUMEN

PURPOSE: Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50-80 µm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. METHODS: The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ((211)At) activity distributions in cryosections of murine and canine tissue samples. RESULTS: The highest spatial resolution was measured at ∼20 µm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10(-4) cpm/cm(2) (40 mm diameter detector area). Simultaneous imaging of multiple tissue sections was performed using a large-area iQID configuration (ø 11.5 cm). Estimation of the (211)At activity distribution was demonstrated at mBq/µg-levels. CONCLUSIONS: Single-particle digital autoradiography of α emitters has advantages over traditional film-based autoradiographic techniques that use phosphor screens, in terms of spatial resolution, sensitivity, and activity quantification capability. The system features and characterization results presented in this study show that the iQID is a promising technology for microdosimetry, because it provides necessary information for interpreting alpha-RIT outcomes and for predicting the therapeutic efficacy of cell-targeted approaches using α emitters.


Asunto(s)
Autorradiografía/instrumentación , Autorradiografía/métodos , Cámaras gamma , Radioinmunoterapia/instrumentación , Radioinmunoterapia/métodos , Animales , Antígenos CD20/administración & dosificación , Astato , Perros , Diseño de Equipo , Femenino , Antígenos Comunes de Leucocito/administración & dosificación , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/efectos de la radiación , Linfoma no Hodgkin/diagnóstico por imagen , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/radioterapia , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Fantasmas de Imagen , Radiografía , Programas Informáticos
20.
PLoS One ; 10(3): e0120561, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25785845

RESUMEN

PURPOSE: Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice. METHODS: Parallel experiments evaluating the biodistribution, imaging, dosimetry, therapeutic efficacy, and toxicity were performed in female athymic nude mice bearing either Ramos (Burkitt lymphoma) or Granta (mantle cell lymphoma) xenografts, utilizing an anti-CD20 antibody-streptavidin conjugate (1F5-SA) and an 90Y- or 177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-biotin second step reagent. RESULTS: The two radionuclides displayed comparable biodistributions in tumors and normal organs; however, the absorbed radiation dose delivered to tumor was more than twice as high for 90Y (1.3 Gy/MBq) as for 177Lu (0.6 Gy/MBq). More importantly, therapy with 90Y-DOTA-biotin was dramatically more effective than with 177Lu-DOTA-biotin, with 100% of Ramos xenograft-bearing mice cured with 37 MBq 90Y, whereas 0% were cured using identical amounts of 177Lu-DOTA-biotin. Similar results were observed in mice bearing Granta xenografts, with 80% of the mice cured with 90Y-PRIT and 0% cured with 177Lu-PRIT. Toxicities were comparable with both isotopes. CONCLUSION: 90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in these human lymphoma xenograft models.


Asunto(s)
Antígenos CD20/inmunología , Inmunoconjugados/uso terapéutico , Lutecio/uso terapéutico , Linfoma/radioterapia , Radioinmunoterapia/métodos , Radioisótopos de Itrio/uso terapéutico , Animales , Partículas beta/uso terapéutico , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Humanos , Inmunoconjugados/efectos adversos , Inmunoconjugados/inmunología , Lutecio/efectos adversos , Lutecio/farmacocinética , Linfoma/inmunología , Linfoma/patología , Ratones , Ratones Desnudos , Radioinmunoterapia/efectos adversos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto , Radioisótopos de Itrio/efectos adversos , Radioisótopos de Itrio/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...