Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Life Sci ; 285: 119962, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34563566

RESUMEN

AIMS: Growing evidence suggests that Gulf War Illness (GWI) is the result of underlying neuroimmune dysfunction. For example, previously we found that several GWI-relevant organophosphate acetylcholinesterase inhibitors produce heightened neuroinflammatory responses following subchronic exposure to stress hormone as a mimic of high physiological stress. The goal of the current study was to evaluate the potential for the ß-adrenergic receptor inhibitor and anti-inflammatory drug, propranolol, to treat neuroinflammation in a novel long-term mouse model of GWI. MAIN METHODS: Adult male C57BL/6J mice received a subchronic exposure to corticosterone (CORT) at levels mimicking high physiological stress followed by exposure to the sarin surrogate, diisopropyl fluorophosphate (DFP). These mice were then re-exposed to CORT every other week for a total of five weeks, followed by a systemic immune challenge with lipopolysaccharide (LPS). Animals receiving the propranolol treatment were given a single dose (20 mg/kg, i.p.) either four or 11 days prior to the LPS challenge. The potential anti-neuroinflammatory effects of propranolol were interrogated by analysis of cytokine mRNA expression. KEY FINDINGS: We found that our long-term GWI model produces a primed neuroinflammatory response to subsequent immune challenge that is dependent upon GWI-relevant organophosphate exposure. Propranolol treatment abrogated the elaboration of inflammatory cytokine mRNA expression in the brain instigated in our model, having no treatment effects in non-DFP exposed groups. SIGNIFICANCE: Our results indicate that propranolol may be a promising therapy for GWI with the potential to treat the underlying neuroinflammation associated with the illness.


Asunto(s)
Antagonistas Adrenérgicos beta/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Encéfalo/inmunología , Citocinas/antagonistas & inhibidores , Encefalitis/tratamiento farmacológico , Síndrome del Golfo Pérsico/tratamiento farmacológico , Propranolol/uso terapéutico , Antagonistas Adrenérgicos beta/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Corticosterona , Citocinas/inmunología , Modelos Animales de Enfermedad , Encefalitis/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/inmunología , Propranolol/farmacología
2.
Front Neurosci ; 14: 818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922257

RESUMEN

Gulf War illness (GWI) is a chronic and multi-symptomatic disorder with persistent neuroimmune symptomatology. Chemokine receptor 6 (CCR6) has been shown to be involved in several inflammation disorders in humans. However, the causative relationship between CCR6 and neuroinflammation in GWI has not yet been investigated. By using RNA-seq data of prefrontal cortex (PFC) from 31 C57BL/6J X DBA/2J (BXD) recombinant inbred (RI) mouse strains and their parental strains under three chemical treatment groups - saline control (CTL), diisopropylfluorophosphate (DFP), and corticosterone combined with diisopropylfluorophosphate (CORT+DFP), we identified Ccr6 as a candidate gene underlying individual differences in susceptibility to GWI. The Ccr6 gene is cis-regulated and its expression is significantly correlated with CORT+DFP treatment. Its mean transcript abundance in PFC of BXD mice decreased 1.6-fold (p < 0.0001) in the CORT+DFP group. The response of Ccr6 to CORT+DFP is also significantly different (p < 0.0001) between the parental strains, suggesting Ccr6 is affected by both host genetic background and chemical treatments. Pearson product-moment correlation analysis revealed 1473 Ccr6-correlated genes (p < 0.05). Enrichment of these genes was seen in the immune, inflammation, cytokine, and neurological related categories. In addition, we also found five central nervous system-related phenotypes and fecal corticosterone concentration have significant correlation (p < 0.05) with expression of Ccr6 in the PFC. We further established a protein-protein interaction subnetwork for the Ccr6-correlated genes, which provides an insight on the interaction of G protein-coupled receptors, kallikrein-kinin system and neuroactive ligand-receptors. This analysis likely defines the heterogeneity and complexity of GWI. Therefore, our results suggest that Ccr6 is one of promising GWI biomarkers.

3.
Brain Behav Immun ; 89: 209-223, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32574576

RESUMEN

Gulf War Illness (GWI) is thought to be a chronic neuroimmune disorder caused by in-theater exposure during the 1990-1991 Gulf War. There is a consensus that the illness is caused by exposure to insecticides and nerve agent toxicants. However, the heterogeneity in both development of disease and clinical outcomes strongly suggests a genetic contribution. Here, we modeled GWI in 30 BXD recombinant inbred mouse strains with a combined treatment of corticosterone (CORT) and diisopropyl fluorophosphate (DFP). We quantified transcriptomes from 409 prefrontal cortex samples. Compared to the untreated and DFP treated controls, the combined treatment significantly activated pathways such as cytokine-cytokine receptor interaction and TNF signaling pathway. Protein-protein interaction analysis defined 6 subnetworks for CORT + DFP, with the key regulators being Cxcl1, Il6, Ccnb1, Tnf, Agt, and Itgam. We also identified 21 differentially expressed genes having significant QTLs related to CORT + DFP, but without evidence for untreated and DFP treated controls, suggesting regions of the genome specifically involved in the response to CORT + DFP. We identified Adamts9 as a potential contributor to response to CORT + DFP and found links to symptoms of GWI. Furthermore, we observed a significant effect of CORT + DFP treatment on the relative proportion of myelinating oligodendrocytes, with a QTL on Chromosome 5. We highlight three candidates, Magi2, Sema3c, and Gnai1, based on their high expression in the brain and oligodendrocyte. In summary, our results show significant genetic effects of the CORT + DFP treatment, which mirrors gene and protein expression changes seen in GWI sufferers, providing insight into the disease and a testbed for future interventions.


Asunto(s)
Guerra del Golfo , Síndrome del Golfo Pérsico , Animales , Ratones , Modelos Animales de Enfermedad , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Isoflurofato , Síndrome del Golfo Pérsico/genética , Transcriptoma
4.
Brain Sci ; 10(3)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131477

RESUMEN

Between 25% and 30% of the nearly one million military personnel who participated in the 1991 Persian Gulf War became ill with chronic symptoms ranging from gastrointestinal to nervous system dysfunction. This disorder is now referred to as Gulf War Illness (GWI) and the underlying pathophysiology has been linked to exposure-based neuroinflammation caused by organophosphorous (OP) compounds coupled with high circulating glucocorticoids. In a mouse model of GWI we developed, corticosterone was shown to act synergistically with an OP (diisopropylflurophosphate) to dramatically increase proinflammatory cytokine gene expression in the brain. Because not all Gulf War participants became sick, the question arises as to whether differential genetic constitution might underlie individual differences in susceptibility. To address this question of genetic liability, we tested the impact of OP and glucocorticoid exposure in a genetic reference population of 30 inbred mouse strains. We also studied both sexes. The results showed wide differences among strains and overall that females were less sensitive to the combined treatment than males. Furthermore, we identified one OP-glucocorticoid locus and nominated a candidate gene-Spon1-that may underlie the marked differences in response.

5.
Mol Cell Neurosci ; 102: 103449, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31770590

RESUMEN

A novel, potent, and highly specific inhibitor of calcium-calmodulin-dependent phosphodiesterases (PDE) of the PDE1 family, ITI-214, was used to investigate the role of PDE1 in inflammatory responses. ITI-214 dose-dependently suppressed lipopolysaccharide (LPS)-induced gene expression of pro-inflammatory cytokines in an immortalized murine microglial cell line, BV2 cells. RNA profiling (RNA-Seq) was used to analyze the impact of ITI-214 on the BV2 cell transcriptome in the absence and the presence of LPS. ITI-214 was found to regulate classes of genes that are involved in inflammation and cell migration responses to LPS exposure. The gene expression changes seen with ITI-214 treatment were distinct from those elicited by inhibitors of other PDEs with anti-inflammatory activity (e.g., a PDE4 inhibitor), indicating a distinct mechanism of action for PDE1. Functionally, ITI-214 inhibited ADP-induced migration of BV2 cells through a P2Y12-receptor-dependent pathway, possibly due to increases in the extent of cAMP and VASP phosphorylation downstream of receptor activation. Importantly, this effect was recapitulated in P2 rat microglial cells in vitro, indicating that these pathways are active in native microglial cells. These studies are the first to demonstrate that inhibition of PDE1 exerts anti-inflammatory effects through effects on microglia signaling pathways. The ability of PDE1 inhibitors to prevent or dampen excessive inflammatory responses of BV2 cells and microglia provides a basis for exploring their therapeutic utility in the treatment of neurodegenerative diseases associated with increased inflammation and microglia proliferation such as Parkinson's disease and Alzheimer's disease.


Asunto(s)
Antiinflamatorios/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Microglía/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Movimiento Celular , Células Cultivadas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/fisiología , Fosfoproteínas/metabolismo , Ratas , Receptores Purinérgicos P2Y12/metabolismo , Transducción de Señal
6.
Metabolism ; 100S: 153951, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31610852

RESUMEN

Neuroinflammation is a condition characterized by the elaboration of proinflammatory mediators within the central nervous system. Neuroinflammation has emerged as a dominant theme in contemporary neuroscience due to its association with neurodegenerative disease states such as Alzheimer's disease, Parkinson's disease and Huntington's disease. While neuroinflammation often is associated with damage to the CNS, it also can occur in the absence of neurodegeneration, e.g., in association with systemic infection. The "acute phase" inflammatory response to tissue injury or infections instigates neuroinflammation-driven "sickness behavior," i.e. a constellation of symptoms characterized by loss of appetite, fever, muscle pain, fatigue and cognitive problems. Typically, sickness behavior accompanies an inflammatory response that resolves quickly and serves to restore the body to homeostasis. However, recurring and sometimes chronic sickness behavior disorders can occur in the absence of an underlying cause or attendant neuropathology. Here, we review myalgic enchepalomyelitis/chronic fatigue syndrome (ME/CFS), Gulf War Illness (GWI), and chemobrain as examples of such disorders and propose that they can be exacerbated and perhaps initiated by a variety of environmental stressors. Diverse environmental stressors may disrupt the hypothalamic pituitary adrenal (HPA) axis and contribute to the degree and duration of a variety of neuroinflammation-driven diseases.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Inflamación/etiología , Enfermedades Neurodegenerativas/etiología , Animales , Síndrome de Fatiga Crónica/etiología , Humanos , Sistema Hipotálamo-Hipofisario/fisiopatología , Enfermedades Neurodegenerativas/patología , Síndrome del Golfo Pérsico/etiología
7.
Am J Hum Biol ; 31(6): e23296, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31332861

RESUMEN

OBJECTIVE: Police officers have higher rates of cardiovascular disease (CVD) morbidity and mortality than the U.S. general population. Officers are exposed to conventional and unexpected workplace stressors. The hypothalamic-pituitary-adrenal (HPA) axis plays a major role responding to stressor exposure by releasing cortisol. Prolonged release or excessive levels may result in disease. Our study investigated cross-sectional associations between self-reported work stress and various salivary cortisol parameters. METHODS: A total of 285 police officers (76.5% male) from the Buffalo Cardio-Metabolic Occupational Police Stress (BCOPS) Study (2004-2009) completed the Spielberger Police Stress Survey, reporting frequency and severity of work events during the past month and year to calculate stress indices. Officers provided saliva samples to measure levels of cortisol secretion. Linear regression assessed associations between stress indices and various cortisol parameters, adjusted for age, gender, race/ethnicity, abdominal height, and smoking status. RESULTS: Significant positive associations were observed between stress indices (overall stress, physical danger stress, and past-month lack of support) and diurnal cortisol (AUCg: total area under the curve). Administrative, overall, and physical danger stress in the past year were significantly associated with the diurnal slope. Overall, administrative, and physical danger stress were significantly associated with bedtime levels. There were no significant associations between the stress indices and the awakening cortisol parameters. CONCLUSIONS: Higher stress ratings were related to blunted diurnal decline in cortisol, suggesting conventional and unexpected police stressors may result in HPA axis dysfunction. Future studies investigating possible associations between elevated cortisol and subclinical CVD are needed.


Asunto(s)
Hidrocortisona/metabolismo , Estrés Laboral/epidemiología , Policia/estadística & datos numéricos , Adulto , Ritmo Circadiano , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , New York/epidemiología , Estrés Laboral/psicología , Saliva/química , Autoinforme
8.
J Neurochem ; 150(4): 420-440, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31222732

RESUMEN

Neurotoxicology is hampered by the inability to predict regional and cellular targets of toxicant-induced damage. Evaluating astrogliosis overcomes this problem because reactive astrocytes highlight the location of toxicant-induced damage. While enhanced expression of glial fibrillary acidic protein is a hallmark of astrogliosis, few other biomarkers have been identified. However, bacterial artificial chromosome - translating ribosome affinity purification (bacTRAP) technology allows for characterization of the actively translating transcriptome of a particular cell type; use of this technology in aldehyde dehydrogenase 1 family member L1 (ALDH1L1) bacTRAP mice can identify genes selectively expressed in astrocytes. The aim of this study was to characterize additional biomarkers of neurotoxicity-induced astrogliosis using ALDH1L1 bacTRAP mice. The known dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 12.5 mg/kg s.c.) was used to induce astrogliosis. Striatal tissue was obtained 12, 24, and 48 h following exposure for the isolation of actively translating RNA. Subsequently, MPTP-induced changes in this RNA pool were analyzed by microarray and 184 statistically significant, differentially expressed genes were identified. The dataset was interrogated by gene ontology, pathway, and co-expression network analyses, which identified novel genes, as well as those with known immune and inflammatory functions. Using these analyses, we were directed to several genes associated with reactive astrocytes. Of these, TIMP1 and miR-147 were identified as candidate biomarkers because of their robust increased expression following both MPTP and trimethyl tin exposures. Thus, we have demonstrated that bacTRAP can be used to identify new biomarkers of astrogliosis and aid in the characterization of astrocyte phenotypes induced by toxicant exposures. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14518.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/metabolismo , Astrocitos/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Gliosis/genética , Intoxicación por MPTP/genética , Retinal-Deshidrogenasa/metabolismo , Animales , Astrocitos/metabolismo , Biomarcadores/metabolismo , Cromosomas Artificiales Bacterianos , Gliosis/inducido químicamente , Intoxicación por MPTP/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
9.
Neurotoxicology ; 70: 26-32, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30339781

RESUMEN

Gulf War Illness (GWI) is a chronic multi-symptom disorder experienced by as many as a third of the veterans of the 1991 Gulf War; the constellation of "sickness behavior" symptoms observed in ill veterans is suggestive of a neuroimmune involvement. Various chemical exposures and conditions in theater have been implicated in the etiology of the illness. Previously, we found that GW-related organophosphates (OPs), such as the sarin surrogate, DFP, and chlorpyrifos, cause neuroinflammation. The combination of these exposures with exogenous corticosterone (CORT), mimicking high physiological stress, exacerbates the observed neuroinflammation. The potential relationship between the effects of OPs and CORT on the brain versus inflammation in the periphery has not been explored. Here, using our established GWI mouse model, we investigated the effects of CORT and DFP exposure, with or without a chronic application of pyridostigmine bromide (PB) and N,N-diethyl-meta-toluamide (DEET), on cytokines in the liver and serum. While CORT primed DFP-induced neuroinflammation, this effect was largely absent in the periphery. Moreover, the changes found in the peripheral tissues do not correlate with the previously reported neuroinflammation. These results not only support GWI as a neuroimmune disorder, but also highlight the separation between central and peripheral effects of these exposures.


Asunto(s)
Corticosterona/toxicidad , Citocinas/biosíntesis , DEET/toxicidad , Mediadores de Inflamación/sangre , Síndrome del Golfo Pérsico/sangre , Bromuro de Piridostigmina/toxicidad , Animales , Inhibidores de la Colinesterasa/administración & dosificación , Inhibidores de la Colinesterasa/toxicidad , Corticosterona/administración & dosificación , Citocinas/antagonistas & inhibidores , Citocinas/genética , DEET/administración & dosificación , Modelos Animales de Enfermedad , Expresión Génica , Inflamación/sangre , Inflamación/inducido químicamente , Mediadores de Inflamación/antagonistas & inhibidores , Repelentes de Insectos/administración & dosificación , Repelentes de Insectos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico/inducido químicamente , Bromuro de Piridostigmina/administración & dosificación
10.
Front Cell Neurosci ; 12: 336, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30374291

RESUMEN

Aberrant inflammatory signaling between neuronal and glial cells can develop into a persistent sickness behavior-related disorders, negatively impacting learning, memory, and neurogenesis. While there is an abundance of literature describing these interactions, there still lacks a comprehensive mathematical model describing the complex feed-forward and feedback mechanisms of neural-glial interaction. Here we compile molecular and cellular signaling information from various studies and reviews in the literature to create a logically-consistent, theoretical model of neural-glial interaction in the brain to explore the role of neuron-glia homeostatic regulation in the perpetuation of neuroinflammation. Logic rules are applied to this connectivity diagram to predict the system's homeostatic behavior. We validate our model predicted homeostatic profiles against RNAseq gene expression profiles in a mouse model of stress primed neuroinflammation. A meta-analysis was used to calculate the significance of similarity between the inflammatory profiles of mice exposed to diisopropyl fluorophostphate (DFP) [with and without prior priming by the glucocorticoid stress hormone corticosterone (CORT)], with the equilibrium states predicted by the model, and to provide estimates of the degree of the neuroinflammatory response. Beyond normal homeostatic regulation, our model predicts an alternate self-perpetuating condition consistent with chronic neuroinflammation. RNAseq gene expression profiles from the cortex of mice exposed to DFP and CORT+DFP align with this predicted state of neuroinflammation, whereas the alignment to CORT alone was negligible. Simulations of putative treatment strategies post-exposure were shown to be theoretically capable of returning the system to a state of typically healthy regulation with broad-acting anti-inflammatory agents showing the highest probability of success. The results support a role for the brain's own homeostatic drive in perpetuating the chronic neuroinflammation associated with exposure to the organophosphate DFP, with and without CORT priming. The deviation of illness profiles from exact model predictions suggests the presence of additional factors or of lasting changes to the brain's regulatory circuitry specific to each exposure.

11.
Toxicol Sci ; 165(2): 302-313, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29846716

RESUMEN

Many veterans of the 1991 Persian Gulf War (GW) returned with a chronic multisymptom illness that has been termed Gulf War Illness (GWI). Previous GWI studies have suggested that exposure to acetylcholinesterase inhibitors (AChEIs) in theater, such as sarin and/or pesticides, may have contributed to the symptomatology of GWI. Additionally, concomitant high physiological stress experienced during the war may have contributed to the initiation of the GWI phenotype. Although inhibition of AChE leading to accumulation of acetylcholine (ACh) will activate the cholinergic anti-inflammatory pathway, the signature symptomatology of GWI has been shown to be associated with neuroinflammation. To investigate the relationship between ACh and neuroinflammation in discrete brain regions, we used our previously established mouse model of GWI, which combines an exposure to a high physiological stress mimic, corticosterone (CORT), with GW-relevant AChEIs. The AChEIs used in this study were diisopropyl fluorophosphate (DFP), chlorpyrifos oxon (CPO), and physostigmine (PHY). After AChEI exposure, ACh concentrations for cortex (CTX), hippocampus (HIP), and striatum (STR) were determined using hydrophilic interaction liquid chromatography with ultraperformance liquid chromatography-tandem-mass spectrometry (MS/MS). CORT pretreatment ameliorated the DFP-induced ACh increase in HIP and STR, but not CTX. CORT pretreatment did not significantly alter ACh levels for CPO and PHY. Further analysis of STR neuroinflammatory biomarkers revealed an exacerbated CORT + AChEI response, which does not correspond to measured brain ACh. By utilizing this new analytical method for discrete brain region analysis of ACh, this work suggests the exacerbated neuroinflammatory effects in our mouse model of GWI are not driven by the accumulation of brain region-specific ACh.


Asunto(s)
Acetilcolina/análisis , Encéfalo/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Síndrome del Golfo Pérsico/inmunología , Acetilcolina/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Cromatografía Líquida de Alta Presión , Corticosterona/farmacología , Inflamación , Masculino , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico/metabolismo , Fenotipo , Estrés Fisiológico/efectos de los fármacos , Espectrometría de Masas en Tándem
12.
J Occup Environ Med ; 60(9): 853-859, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29787400

RESUMEN

OBJECTIVE: To examine the association of the cortisol awakening response (CAR) with change in brachial artery flow-mediated dilation (FMD%) in police officers over a 7-year period. METHODS: Baseline CAR was obtained from four saliva samples taken 15 minutes apart immediately after awakening. Analysis of covariance was used to compare the change in FMD% (FMD%Follow-up-FMD%Baseline) across tertiles of area under the cortisol curve with respect to increase (AUCI). Regression analysis was use to assess trend. RESULTS: Officers (n = 172; 81% men) had a mean ±â€ŠSD age of 41 ±â€Š7.6 years. Men in the lowest AUCI tertile (ie, atypical waking cortisol pattern) had a significantly larger 7-year mean decline in FMD% (mean ±â€ŠSE: -2.56 ±â€Š0.64) compared with men in the highest tertile (-0.89 ±â€Š0.69) (P = 0.0087). CONCLUSIONS: An awakening cortisol AUCI predicted worsening of FMD% approximately 7 years later among male officers.


Asunto(s)
Arteria Braquial/fisiopatología , Enfermedades Cardiovasculares/fisiopatología , Hidrocortisona/metabolismo , Vasodilatación , Adulto , Área Bajo la Curva , Enfermedades Asintomáticas , Biomarcadores/metabolismo , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Policia/psicología , Valor Predictivo de las Pruebas , Estudios Prospectivos , Saliva/metabolismo , Estrés Psicológico/metabolismo , Vigilia/fisiología , Adulto Joven
13.
J Neuroinflammation ; 15(1): 86, 2018 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-29549885

RESUMEN

BACKGROUND: Gulf War illness (GWI) is an archetypal, medically unexplained, chronic condition characterised by persistent sickness behaviour and neuroimmune and neuroinflammatory components. An estimated 25-32% of the over 900,000 veterans of the 1991 Gulf War fulfil the requirements of a GWI diagnosis. It has been hypothesised that the high physical and psychological stress of combat may have increased vulnerability to irreversible acetylcholinesterase (AChE) inhibitors leading to a priming of the neuroimmune system. A number of studies have linked high levels of psychophysiological stress and toxicant exposures to epigenetic modifications that regulate gene expression. Recent research in a mouse model of GWI has shown that pre-exposure with the stress hormone corticosterone (CORT) causes an increase in expression of specific chemokines and cytokines in response to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. METHODS: C57BL/6J mice were exposed to CORT for 4 days, and exposed to DFP on day 5, before sacrifice 6 h later. The transcriptome was examined using RNA-seq, and the epigenome was examined using reduced representation bisulfite sequencing and H3K27ac ChIP-seq. RESULTS: We show transcriptional, histone modification (H3K27ac) and DNA methylation changes in genes related to the immune and neuronal system, potentially relevant to neuroinflammatory and cognitive symptoms of GWI. Further evidence suggests altered proportions of myelinating oligodendrocytes in the frontal cortex, perhaps connected to white matter deficits seen in GWI sufferers. CONCLUSIONS: Our findings may reflect the early changes which occurred in GWI veterans, and we observe alterations in several pathways altered in GWI sufferers. These close links to changes seen in veterans with GWI indicates that this model reflects the environmental exposures related to GWI and may provide a model for biomarker development and testing future treatments.


Asunto(s)
Encéfalo/metabolismo , Citocinas/metabolismo , Epigénesis Genética/fisiología , Síndrome del Golfo Pérsico/tratamiento farmacológico , Síndrome del Golfo Pérsico/patología , Estrés Psicológico/metabolismo , Animales , Antiinflamatorios/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/patología , Inhibidores de la Colinesterasa/farmacología , Inmunoprecipitación de Cromatina , Corticosterona/toxicidad , Metilación de ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Hidrolasas de Triéster Fosfórico/farmacología , Factores de Tiempo
14.
PLoS One ; 13(1): e0190546, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29304053

RESUMEN

Systemic exposure to the inflammagen and bacterial endotoxin lipopolysaccharide (LPS) has been widely used to evaluate inflammation and sickness behavior. While many inflammatory conditions occur in the periphery, it is well established that peripheral inflammation can affect the brain. Neuroinflammation, the elaboration of proinflammatory mediators in the CNS, commonly is associated with behavioral symptoms (e.g., lethargy, anhedonia, anorexia, depression, etc.) termed sickness behavior. Stressors have been shown to interact with and alter neuroinflammatory responses and associated behaviors. Here, we examined the effects of the stress hormone, corticosterone (CORT), as a stressor mimic, on neuroinflammation induced with a single injection (2mg/kg, s.c.) or inhalation exposure (7.5 µg/m3) of LPS or polyinosinic:polycytidylic acid (PIC; 12mg/kg, i.p.) in adult male C57BL/6J mice. CORT was given in the drinking water (200 mg/L) for 1 week or every other week for 90 days followed by LPS. Proinflammatory cytokine expression (TNFα, IL-6, CCL2, IL-1ß, LIF, and OSM) was measured by qPCR. The activation of the neuroinflammation downstream signaling activator, STAT3, was assessed by immunoblot of pSTAT3Tyr705. The presence of astrogliosis was assessed by immunoassay of GFAP. Acute exposure to LPS caused brain-wide neuroinflammation without producing astrogliosis; exposure to CORT for 1 week caused marked exacerbation of the LPS-induced neuroinflammation. This neuroinflammatory "priming" by CORT was so pronounced that sub-neuroinflammatory exposures by inhalation instigated neuroinflammation when paired with prior CORT exposure. This effect also was extended to another common inflammagen, PIC (a viral mimic). Furthermore, a single week of CORT exposure maintained the potential for priming for 30 days, while intermittent exposure to CORT for up to 90 days synergistically primed the LPS-induced neuroinflammatory response. These findings highlight the possibility for an isolated inflammatory event to be exacerbated by a temporally distant stressful stimulus and demonstrates the potential for recurrent stress to greatly aggravate chronic inflammatory disorders.


Asunto(s)
Corticosterona/administración & dosificación , Inflamación/inducido químicamente , Lipopolisacáridos/administración & dosificación , Enfermedades del Sistema Nervioso/inducido químicamente , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
15.
J Neurochem ; 143(2): 198-213, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28792619

RESUMEN

Our previous studies have raised the possibility that altered blood glucose levels may influence and/or be predictive of methamphetamine (METH) neurotoxicity. This study evaluated the effects of exogenous glucose and corticosterone (CORT) pretreatment alone or in combination with METH on blood glucose levels and the neural and vascular toxicity produced. METH exposure consisted of four sequential injections of 5, 7.5, 10, and 10 mg/kg (2 h between injections) D-METH. The three groups given METH in combination with saline, glucose (METH+Glucose), or CORT (METH+CORT) had significantly higher glucose levels compared to the corresponding treatment groups without METH except at 3 h after the last injection. At this last time point, the METH and METH+Glucose groups had lower levels than the non-METH groups, while the METH+CORT group did not. CORT alone or glucose alone did not significantly increase blood glucose. Mortality rates for the METH+CORT (40%) and METH+Glucose (44%) groups were substantially higher than the METH (< 10%) group. Additionally, METH+CORT significantly increased neurodegeneration above the other three METH treatment groups (≈ 2.5-fold in the parietal cortex). Thus, maintaining elevated levels of glucose during METH exposure increases lethality and may exacerbate neurodegeneration. Neuroinflammation, specifically microglial activation, was associated with degenerating neurons in the parietal cortex and thalamus after METH exposure. The activated microglia in the parietal cortex were surrounding vasculature in most cases and the extent of microglial activation was exacerbated by CORT pretreatment. Our findings show that acute CORT exposure and elevated blood glucose levels can exacerbate METH-induced vascular damage, neuroinflammation, neurodegeneration and lethality. Cover Image for this issue: doi. 10.1111/jnc.13819.


Asunto(s)
Glucemia/efectos de los fármacos , Corticosterona/toxicidad , Glucosa/toxicidad , Metanfetamina/toxicidad , Lóbulo Parietal/efectos de los fármacos , Tálamo/efectos de los fármacos , Animales , Glucemia/metabolismo , Corticosterona/administración & dosificación , Combinación de Medicamentos , Glucosa/administración & dosificación , Masculino , Metanfetamina/administración & dosificación , Microglía/efectos de los fármacos , Microglía/metabolismo , Lóbulo Parietal/irrigación sanguínea , Lóbulo Parietal/metabolismo , Ratas , Ratas Sprague-Dawley , Tálamo/irrigación sanguínea , Tálamo/metabolismo
16.
J Neurochem ; 142(3): 444-455, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28500787

RESUMEN

Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting veterans of the 1991 Gulf War. Among the symptoms of GWI are those associated with sickness behavior, observations suggestive of underlying neuroinflammation. We have shown that exposure of mice to the stress hormone, corticosterone (CORT), and to diisopropyl fluorophosphate (DFP), as a nerve agent mimic, results in marked neuroinflammation, findings consistent with a stress/neuroimmune basis of GWI. Here, we examined the contribution of irreversible and reversible acetylcholinesterase (AChE) inhibitors to neuroinflammation in our mouse model of GWI. Male C57BL/6J mice received 4 days of CORT (400 mg/L) in the drinking water followed by a single dose of chlorpyrifos oxon (CPO; 8 mg/kg, i.p.), DFP (4 mg/kg, i.p.), pyridostigmine bromide (PB; 3 mg/kg, i.p.), or physostigmine (PHY; 0.5 mg/kg, i.p.). CPO and DFP alone caused cortical and hippocampal neuroinflammation assessed by qPCR of tumor necrosis factor-alpha, IL-6, C-C chemokine ligand 2, IL-1ß, leukemia inhibitory factor and oncostatin M; CORT pretreatment markedly augmented these effects. Additionally, CORT exposure prior to DFP or CPO enhanced activation of the neuroinflammation signal transducer, signal transducer and activator of transcription 3 (STAT3). In contrast, PHY or PB alone or with CORT pretreatment did not produce neuroinflammation or STAT3 activation. While all of the CNS-acting AChE inhibitors (DFP, CPO, and PHY) decreased brain AChE activity, CORT pretreatment abrogated these effects for the irreversible inhibitors. Taken together, these findings suggest that irreversible AChE inhibitor-induced neuroinflammation and particularly its exacerbation by CORT, result from non-cholinergic effects of these compounds, pointing potentially to organophosphorylation of other neuroimmune targets.


Asunto(s)
Acetilcolinesterasa/metabolismo , Encéfalo/efectos de los fármacos , Inhibidores de la Colinesterasa/toxicidad , Corticosterona/farmacología , Guerra del Golfo , Organofosfatos/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico/patología , Bromuro de Piridostigmina/farmacología
17.
Am J Hum Biol ; 29(5)2017 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-28295842

RESUMEN

OBJECTIVES: This study examines relationships between the frequency and intensity of police work stressors and cardiac vagal control, estimated using the high frequency component of heart rate variability (HRV). METHODS: This is a cross-sectional study of 360 officers from the Buffalo New York Police Department. Police stress was measured using the Spielberger police stress survey, which includes exposure indices created as the product of the self-evaluation of how stressful certain events were and the self-reported frequency with which they occurred. Vagal control was estimated using the high frequency component of resting HRV calculated in units of milliseconds squared and reported in natural log scale. Associations between police work stressors and vagal control were examined using linear regression for significance testing and analysis of covariance for descriptive purposes, stratified by gender, and adjusted for age and race/ethnicity. RESULTS: There were no significant associations between police work stressor exposure indices and vagal control among men. Among women, the inverse associations between the lack of support stressor exposure and vagal control were statistically significant in adjusted models for indices of exposure over the past year (lowest stressor quartile: M = 5.57, 95% CI 5.07 to 6.08, and highest stressor quartile: M = 5.02, 95% CI 4.54 to 5.51, test of association from continuous linear regression of vagal control on lack of support stressor ß = -0.273, P = .04). CONCLUSIONS: This study supports an inverse association between lack of organizational support and vagal control among female but not male police officers.


Asunto(s)
Frecuencia Cardíaca , Estrés Laboral/epidemiología , Policia , Adulto , Ciudades , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , New York , Estrés Laboral/psicología , Prevalencia
18.
Metabolism ; 69S: S3-S7, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28159329

RESUMEN

Access to the CNS and delivery of therapeutics across the blood-brain barrier remains a challenge for most treatments of major neurological diseases such as AD or PD. Focused ultrasound represents a potential approach for overcoming these barriers to treating AD and PD and perhaps other neurological diseases. Ultrasound (US) is best known for its imaging capabilities of organs in the periphery, but various arrangements of the transducers producing the acoustic signal allow the energy to be precisely focused (F) within the skull. Using FUS in combination with MRI and contrast agents further enhances accuracy by providing clear information on location. Varying the acoustic power allows FUS to be used in applications ranging from imaging, stimulation of brain circuits, to ablation of tissue. In several transgenic mouse models of AD, the use of FUS with microbubbles reduces plaque load and improves cognition and suggests the need to investigate this technology for plaque removal in AD. In PD, FUS is being explored as a way to non-invasively ablate the brain areas responsible for the tremor and dyskinesia associated with the disease, but has yet to be utilized for non-invasive delivery of putative therapeutics. The FUS approach also greatly increases the range of possible CNS therapeutics as it overcomes the issues of BBB penetration. In this review we discuss how the characteristics and various applications of FUS may advance the therapeutics available for treating or preventing neurodegenerative disorders with an emphasis on treating AD and PD.


Asunto(s)
Enfermedades Neurodegenerativas/terapia , Terapias en Investigación , Terapia por Ultrasonido , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Animales , Barrera Hematoencefálica , Medios de Contraste/efectos adversos , Medios de Contraste/uso terapéutico , Sistemas de Liberación de Medicamentos/efectos adversos , Técnicas de Transferencia de Gen/efectos adversos , Técnicas de Transferencia de Gen/tendencias , Humanos , Trombolisis Mecánica/efectos adversos , Trombolisis Mecánica/métodos , Trombolisis Mecánica/tendencias , Microburbujas/efectos adversos , Microburbujas/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/efectos adversos , Fármacos Neuroprotectores/uso terapéutico , Nootrópicos/administración & dosificación , Nootrópicos/efectos adversos , Nootrópicos/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Trasplante de Células Madre/efectos adversos , Trasplante de Células Madre/tendencias , Terminología como Asunto , Terapias en Investigación/efectos adversos , Terapias en Investigación/tendencias , Terapia por Ultrasonido/efectos adversos , Terapia por Ultrasonido/tendencias
19.
Psychoneuroendocrinology ; 75: 124-131, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27816820

RESUMEN

Police officers encounter unpredictable, evolving, and escalating stressful demands in their work. Utilizing the Spielberger Police Stress Survey (60-item instrument for assessing specific conditions or events considered to be stressors in police work), the present study examined the association of the top five highly rated and bottom five least rated work stressors among police officers with their awakening cortisol pattern. Participants were police officers enrolled in the Buffalo Cardio-Metabolic Occupational Police Stress (BCOPS) study (n=338). For each group, the total stress index (product of rating and frequency of the stressor) was calculated. Participants collected saliva by means of Salivettes at four time points: on awakening, 15, 30 and 45min after waking to examine the cortisol awakening response (CAR). Saliva samples were analyzed for free cortisol concentrations. A slope reflecting the awakening pattern of cortisol over time was estimated by fitting a linear regression model relating cortisol in log-scale to time of collection. The slope served as the outcome variable. Analysis of covariance, regression, and repeated measures models were used to determine if there was an association of the stress index with the waking cortisol pattern. There was a significant negative linear association between total stress index of the five highest stressful events and slope of the awakening cortisol regression line (trend p-value=0.0024). As the stress index increased, the pattern of the awakening cortisol regression line tended to flatten. Officers with a zero stress index showed a steep and steady increase in cortisol from baseline (which is often observed) while officers with a moderate or high stress index showed a dampened or flatter response over time. Conversely, the total stress index of the five least rated events was not significantly associated with the awakening cortisol pattern. The study suggests that police events or conditions considered highly stressful by the officers may be associated with disturbances of the typical awakening cortisol pattern. The results are consistent with previous research where chronic exposure to stressors is associated with a diminished awakening cortisol response pattern.


Asunto(s)
Hidrocortisona/metabolismo , Estrés Laboral/metabolismo , Estrés Laboral/psicología , Policia , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
20.
Neurotoxicology ; 55: 40-47, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27182044

RESUMEN

Continuing our previous work in which we showed wide-ranging strain differences in MPTP neurotoxicity in male mice among ten BXD recombinant inbred strains, we replicated our work in females from nine of the same strains. Mice received a single s.c. injection of 12.5mg/kg MPTP or saline. Forty-eight hours later the striatum was dissected for neurochemical analysis. Striatal dopamine (DA) and its metabolites, DOPAC and HVA, striatal serotonin (5-HT) and its metabolite, 5-HIAA, were analyzed using HPLC. Tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP), an astrocytic protein that increases during the astroglial response to neural injury, were measured using ELISA. There were wide genetic variations in the DA, DOPAC, HVA, TH and GFAP responses to MPTP. We also performed principal component analysis (PCA) on the difference values, saline minus MPTP, for DA, DOPAC, HVA and TH and mapped the dominant principal component to a suggestive QTL on chromosome 1 at the same location that we observed previously for males. Moreover, there were significant correlations between the sexes for the effect of MPTP on DA, HVA, and TH. Our findings suggest that the systems genetic approach as utilized here can help researchers understand the role of sex in individual differences. The same approach can pave the way to understand and pinpoint the genetic bases for individual differences in pathology attributable to toxicants. Such systems genetics approach has broad implications for elucidating gene-environment contributions to neurodegenerative diseases.


Asunto(s)
Cuerpo Estriado/metabolismo , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Intoxicación por MPTP/patología , Caracteres Sexuales , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Dopamina/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Homovanílico/metabolismo , Intoxicación por MPTP/inducido químicamente , Masculino , Ratones , Ratones Endogámicos , Serotonina/metabolismo , Especificidad de la Especie , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA