Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38878138

RESUMEN

In health, the human heart is able to match ATP supply and demand perfectly. It requires 6 kg of ATP per day to satisfy demands of external work (mechanical force generation) and internal work (ion movements and basal metabolism). The heart is able to link supply with demand via direct responses to ADP and AMP concentrations but calcium concentrations within myocytes play a key role, signalling both inotropy, chronotropy and matched increases in ATP production. Calcium/calmodulin-dependent protein kinase (CaMKII) is a key adapter to increased workload, facilitating a greater and more rapid calcium concentration change. In the failing heart, this is dysfunctional and ATP supply is impaired. This review aims to examine the mechanisms and pathologies that link increased energy demand to this disrupted situation. We examine the roles of calcium loading, oxidative stress, mitochondrial structural abnormalities and damage-associated molecular patterns.

2.
Tomography ; 9(5): 1603-1616, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37736981

RESUMEN

Commercial human MR scanners are optimised for proton imaging, containing sophisticated prescan algorithms with setting parameters such as RF transmit gain and power. These are not optimal for X-nuclear application and are challenging to apply to hyperpolarised experiments, where the non-renewable magnetisation signal changes during the experiment. We hypothesised that, despite the complex and inherently nonlinear electrodynamic physics underlying coil loading and spatial variation, simple linear regression would be sufficient to accurately predict X-nuclear transmit gain based on concomitantly acquired data from the proton body coil. We collected data across 156 scan visits at two sites as part of ongoing studies investigating sodium, hyperpolarised carbon, and hyperpolarised xenon. We demonstrate that simple linear regression is able to accurately predict sodium, carbon, or xenon transmit gain as a function of position and proton gain, with variation that is less than the intrasubject variability. In conclusion, sites running multinuclear studies may be able to remove the time-consuming need to separately acquire X-nuclear reference power calibration, inferring it from the proton instead.


Asunto(s)
Algoritmos , Protones , Humanos , Calibración , Carbono , Xenón
3.
EBioMedicine ; 93: 104643, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37327674

RESUMEN

BACKGROUND: Socioeconomic pressures, sex, and physical health status strongly influence the development of major depressive disorder (MDD) and mask other contributing factors in small cohorts. Resilient individuals overcome adversity without the onset of psychological symptoms, but resilience, as for susceptibility, has a complex and multifaceted molecular basis. The scale and depth of the UK Biobank affords an opportunity to identify resilience biomarkers in rigorously matched, at-risk individuals. Here, we evaluated whether blood metabolites could prospectively classify and indicate a biological basis for susceptibility or resilience to MDD. METHODS: Using the UK Biobank, we employed random forests, a supervised, interpretable machine learning statistical method to determine the relative importance of sociodemographic, psychosocial, anthropometric, and physiological factors that govern the risk of prospective MDD onset (total n = 15,710). We then used propensity scores to rigorously match individuals with a history of MDD (n = 491) against a resilient subset of individuals without an MDD diagnosis (retrospectively or during follow-up; n = 491) using an array of key social, demographic, and disease-associated drivers of depression risk. 381 blood metabolites and clinical chemistry variables and 4 urine metabolites were integrated to generate a multivariate random forest-based algorithm using 10-fold cross-validation to predict prospective MDD risk and resilience. OUTCOMES: In unmatched individuals, a first case of MDD, with a median time-to-diagnosis of 72 years, can be predicted using random forest classification probabilities with an area under the receiver operator characteristic curve (ROC AUC) of 0.89. Prospective resilience/susceptibility to MDD was then predicted with a ROC AUC of 0.72 (x˜ = 3.2 years follow-up) and 0.68 (x˜ = 7.2 years follow-up). Increased pyruvate was identified as a key biomarker of resilience to MDD and was validated retrospectively in the TwinsUK cohort. INTERPRETATION: Blood metabolites prospectively associate with substantially reduced MDD risk. Therapeutic targeting of these metabolites may provide a framework for MDD risk stratification and reduction. FUNDING: New York Academy of Sciences' Interstellar Programme Award; Novo Fonden; Lincoln Kingsgate award; Clarendon Fund; Newton-Abraham studentship (University of Oxford). The funders had no role in the development of the present study.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/psicología , Estudios Prospectivos , Estudios Retrospectivos , Biomarcadores , Algoritmos
4.
NMR Biomed ; : e4950, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046414

RESUMEN

Even at 7 T, cardiac 31 P magnetic resonance spectroscopic imaging (MRSI) is fundamentally limited by low signal-to-noise ratio (SNR), leading to long scan times and poor temporal and spatial resolutions. Compartment-based reconstruction algorithms such as magnetic resonance spectroscopy with linear algebraic modeling (SLAM) and spectral localization by imaging (SLIM) may improve SNR or reduce scan time without changes to acquisition. Here, we compare the repeatability and SNR performance of these compartment-based methods, applied to three different acquisition schemes at 7 T. Twelve healthy volunteers were scanned twice. Each scan session consisted of a 6.5-min 3D acquisition-weighted (AW) cardiac 31 P phase encode-based MRSI acquisition and two 6.5-min truncated k-space acquisitions with increased averaging (4 × 4 × 4 central k-space phase encodes and fractional SLAM [fSLAM] optimized k-space phase encodes). Spectra were reconstructed using (i) AW Fourier reconstruction; (ii) AW SLAM; (iii) AW SLIM; (iv) 4 × 4 × 4 SLAM; (v) 4 × 4 × 4 SLIM; and (vi) fSLAM acquisition-reconstruction combinations. The phosphocreatine-to-adenosine triphosphate (PCr/ATP) ratio, the PCr SNR, and spatial response functions were computed, in addition to coefficients of reproducibility and variability. Using the compartment-based reconstruction algorithms with the AW 31 P acquisition resulted in a significant increase in SNR compared with previously published Fourier-based MRSI reconstruction methods while maintaining the measured PCr/ATP ratio and improving interscan reproducibility. The alternative acquisition strategies with truncated k-space performed no better than the common AW approach. Compartment-based spectroscopy approaches provide an attractive reconstruction method for cardiac 31 P spectroscopy at 7 T, improving reproducibility and SNR without the need for a dedicated k-space sampling strategy.

5.
Circulation ; 147(22): 1654-1669, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37070436

RESUMEN

BACKGROUND: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as a paramount treatment for patients with heart failure (HF), irrespective of underlying reduced or preserved ejection fraction. However, a definite cardiac mechanism of action remains elusive. Derangements in myocardial energy metabolism are detectable in all HF phenotypes, and it was proposed that SGLT2i may improve energy production. The authors aimed to investigate whether treatment with empagliflozin leads to changes in myocardial energetics, serum metabolomics, and cardiorespiratory fitness. METHODS: EMPA-VISION (Assessment of Cardiac Energy Metabolism, Function and Physiology in Patients With Heart Failure Taking Empagliflozin) is a prospective, randomized, double-blind, placebo-controlled, mechanistic trial that enrolled 72 symptomatic patients with chronic HF with reduced ejection fraction (HFrEF; n=36; left ventricular ejection fraction ≤40%; New York Heart Association class ≥II; NT-proBNP [N-terminal pro-B-type natriuretic peptide] ≥125 pg/mL) and HF with preserved ejection fraction (HFpEF; n=36; left ventricular ejection fraction ≥50%; New York Heart Association class ≥II; NT-proBNP ≥125 pg/mL). Patients were stratified into respective cohorts (HFrEF versus HFpEF) and randomly assigned to empagliflozin (10 mg; n=35: 17 HFrEF and 18 HFpEF) or placebo (n=37: 19 HFrEF and 18 HFpEF) once daily for 12 weeks. The primary end point was a change in the cardiac phosphocreatine:ATP ratio (PCr/ATP) from baseline to week 12, determined by phosphorus magnetic resonance spectroscopy at rest and during peak dobutamine stress (65% of age-maximum heart rate). Mass spectrometry on a targeted set of 19 metabolites was performed at baseline and after treatment. Other exploratory end points were investigated. RESULTS: Empagliflozin treatment did not change cardiac energetics (ie, PCr/ATP) at rest in HFrEF (adjusted mean treatment difference [empagliflozin - placebo], -0.25 [95% CI, -0.58 to 0.09]; P=0.14) or HFpEF (adjusted mean treatment difference, -0.16 [95% CI, -0.60 to 0.29]; P=0.47]. Likewise, there were no changes in PCr/ATP during dobutamine stress in HFrEF (adjusted mean treatment difference, -0.13 [95% CI, -0.35 to 0.09]; P=0.23) or HFpEF (adjusted mean treatment difference, -0.22 [95% CI, -0.66 to 0.23]; P=0.32). No changes in serum metabolomics or levels of circulating ketone bodies were observed. CONCLUSIONS: In patients with either HFrEF or HFpEF, treatment with 10 mg of empagliflozin once daily for 12 weeks did not improve cardiac energetics or change circulating serum metabolites associated with energy metabolism when compared with placebo. Based on our results, it is unlikely that enhancing cardiac energy metabolism mediates the beneficial effects of SGLT2i in HF. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03332212.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Volumen Sistólico , Función Ventricular Izquierda , Estudios Prospectivos , Dobutamina/farmacología , Metabolismo Energético , Adenosina Trifosfato
6.
Sci Rep ; 13(1): 1613, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709217

RESUMEN

Hyperpolarized carbon-13 magnetic resonance imaging is a promising technique for in vivo metabolic interrogation of alterations between health and disease. This study introduces a formalism for quantifying the metabolic information in hyperpolarized imaging. This study investigated a novel perfusion formalism and metabolic clearance rate (MCR) model in pre-clinical stroke and in the healthy human brain. Simulations showed that the proposed model was robust to perturbations in T1, transmit B1, and kPL. A significant difference in ipsilateral vs contralateral pyruvate derived cerebral blood flow (CBF) was detected in rats (140 ± 2 vs 89 ± 6 mL/100 g/min, p < 0.01, respectively) and pigs (139 ± 12 vs 95 ± 5 mL/100 g/min, p = 0.04, respectively), along with an increase in fractional metabolism (26 ± 5 vs 4 ± 2%, p < 0.01, respectively) in the rodent brain. In addition, a significant increase in ipsilateral vs contralateral MCR (0.034 ± 0.007 vs 0.017 ± 0.02/s, p = 0.03, respectively) and a decrease in mean transit time (31 ± 8 vs 60 ± 2 s, p = 0.04, respectively) was observed in the porcine brain. In conclusion, MCR mapping is a simple and robust approach to the post-processing of hyperpolarized magnetic resonance imaging.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Ratas , Porcinos , Animales , Tasa de Depuración Metabólica , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ácido Pirúvico/metabolismo , Isótopos de Carbono/metabolismo , Cabeza
7.
Chem Commun (Camb) ; 59(12): 1605-1608, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36655730

RESUMEN

Paramagnetically-doped polymer micelles, containing an ionizable poly(acrylic acid) (PAA) block, support high-contrast MR imaging at clinically relevant field strengths in a manner that is strongly pH responsive. A reversible switch in polymer strand charge specifically has a direct impact on local rigidity, and rotational correlation time characteristics, of the integrated Gd-chelate, driving a ∼50% amplitude switch in positive contrast.

8.
Cardiovasc Drugs Ther ; 37(2): 379-399, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35881280

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is recognised as an increasingly prevalent, morbid and burdensome condition with a poor outlook. Recent advances in both the understanding of HFpEF and the technological ability to image cardiac function and metabolism in humans have simultaneously shone a light on the molecular basis of this complex condition of diastolic dysfunction, and the inflammatory and metabolic changes that are associated with it, typically in the context of a complex patient. This review both makes the case for an integrated assessment of the condition, and highlights that metabolic alteration may be a measurable outcome for novel targeted forms of medical therapy. It furthermore highlights how recent technological advancements and advanced medical imaging techniques have enabled the characterisation of the metabolism and function of HFpEF within patients, at rest and during exercise.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/tratamiento farmacológico , Volumen Sistólico , Diagnóstico por Imagen , Ejercicio Físico , Función Ventricular Izquierda
9.
Front Physiol ; 14: 1325458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38314138

RESUMEN

Motivation: 31P magnetic resonance spectroscopic imaging (31P MRSI) is a powerful technique for investigating the metabolic effects of treatments for heart failure in vivo, allowing a better understanding of their mechanism of action in patient cohorts. Unfortunately, cardiac 31P MRSI is fundamentally limited by low SNR, which leads to compromises in acquisition, such as no cardiac or respiratory gating or low spatial resolution, in order to achieve reasonable scan times. Spectroscopy with linear algebra modeling (SLAM) reconstruction may be able to address these challenges and therefore improve repeatability by incorporating a segmented localizer into the reconstruction. Methods: Six healthy volunteers were scanned twice in a test-retest procedure to allow quantification of repeatability. Each scan consisted of anatomical localizers and two acquisition-weighted (AW) 31P MRSI acquisitions, which were acquired with and without cardiac gating. Five patients with heart failure with a preserved ejection fraction were then scanned with the same 31P MRSI sequence without cardiac gating. All 31P MRSI datasets were reconstructed with both conventional Fourier transform (FT)-based reconstruction and SLAM reconstruction, which were compared statistically. The effect of shifting the 31P MRSI acquisition field of view was also investigated. Results: In the healthy volunteer cohort, the spectral fit of the SLAM reconstructions had significantly improved Cramer-Rao lower bounds (CRLBs) compared to the FT-based reconstruction of non-cardiac gated data, as well as improved coefficients of variability and repeatability. The SLAM reconstruction found a significant difference in the PCr/ATP ratio between the healthy volunteer and patient cohorts, which the FT-based reconstruction did not find. Furthermore, the SLAM reconstruction was less influenced by the placement of the field of view (FOV) of the 31P MRSI acquisition in post hoc analysis. Discussion: The experimental benefits of the SLAM reconstruction for AW data were demonstrated by the improvements in fit confidence and repeatability seen in the healthy volunteer cohort and post hoc FOV analysis. The benefit of SLAM reconstruction of AW data for clinical studies was then illustrated by the patient cohort, which suggested improved sensitivity to clinically significant changes in the PCr/ATP ratio.

10.
Sci Adv ; 8(35): eabm7935, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044567

RESUMEN

Protein assembly is a main route to generating complexity in living systems. Revealing the relevant molecular details is challenging because of the intrinsic heterogeneity of species ranging from few to hundreds of molecules. Here, we use mass photometry to quantify and monitor the full range of actin oligomers during polymerization with single-molecule sensitivity. We find that traditional nucleation-based models cannot account for the observed distributions of actin oligomers. Instead, the key step of filament formation is a slow transition between distinct states of an actin filament mediated by cation exchange or ATP hydrolysis. The resulting model reproduces important aspects of actin polymerization, such as the critical concentration for filament formation and bulk growth behavior. Our results revise the mechanism of actin nucleation, shed light on the role and function of actin-associated proteins, and introduce a general and quantitative means to studying protein assembly at the molecular level.

11.
Magn Reson Med ; 88(3): 1324-1332, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35468245

RESUMEN

PURPOSE: To determine the effect of altering anesthetic oxygen protocols on measurements of cerebral perfusion and metabolism in the rodent brain. METHODS: Seven rats were anesthetized and underwent serial MRI scans with hyperpolarized [1-13 C]pyruvate and perfusion weighted imaging. The anesthetic carrier gas protocol used varied from 100:0% to 90:10% to 60:40% O2 :N2 O. Spectra were quantified with AMARES and perfusion imaging was processed using model-free deconvolution. A 1-way ANOVA was used to compare results across groups, with pairwise t tests performed with correction for multiple comparisons. Spearman's correlation analysis was performed between O2 % and MR measurements. RESULTS: There was a significant increase in bicarbonate:total 13 C carbon and bicarbonate:13 C pyruvate when moving between 100:0 to 90:10 and 100:0 to 60:40 O2 :N2 O % (0.02 ± 0.01 vs. 0.019 ± 0.005 and 0.02 ± 0.01 vs. 0.05 ± 0.02, respectively) and (0.04 ± 0.01 vs. 0.03 ± 0.01 and 0.04 ± 0.01 vs. 0.08 ± 0.02, respectively). There was a significant difference in 13 C pyruvate time to peak when moving between 100:0 to 90:10 and 100:0 to 60:40 O2 :N2 O % (13 ± 2 vs. 10 ± 1 and 13 ± 2 vs. 7.5 ± 0.5 s, respectively) as well as significant differences in cerebral blood flow (CBF) between gas protocols. Significant correlations between bicarbonate:13 C pyruvate and gas protocol (ρ = -0.47), mean transit time and gas protocol (ρ = 0.41) and 13 C pyruvate time-to-peak and cerebral blood flow (ρ = -0.54) were also observed. CONCLUSIONS: These results demonstrate that the detection and quantification of cerebral metabolism and perfusion is dependent on the oxygen protocol used in the anesthetized rodent brain.


Asunto(s)
Anestésicos por Inhalación , Bicarbonatos , Anestésicos por Inhalación/farmacología , Animales , Bicarbonatos/metabolismo , Encéfalo/metabolismo , Isótopos de Carbono/metabolismo , Imagen por Resonancia Magnética/métodos , Oxígeno/metabolismo , Ácido Pirúvico/metabolismo , Ratas
12.
Metabol Open ; 14: 100177, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35313531

RESUMEN

Background and aims: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition. It is tightly associated with an adverse metabolic phenotype (including obesity and type 2 diabetes) as well as with obstructive sleep apnoea (OSA) of which intermittent hypoxia is a critical component. Hepatic de novo lipogenesis (DNL) is a significant contributor to hepatic lipid content and the pathogenesis of NAFLD and has been proposed as a key pathway to target in the development of pharmacotherapies to treat NAFLD. Our aim is to use experimental models to investigate the impact of hypoxia on hepatic lipid metabolism independent of obesity and metabolic disease. Methods: Human and rodent studies incorporating stable isotopes and hyperinsulinaemic euglycaemic clamp studies were performed to assess the regulation of DNL and broader metabolic phenotype by intermittent hypoxia. Cell-based studies, including pharmacological and genetic manipulation of hypoxia-inducible factors (HIF), were used to examine the underlying mechanisms. Results: Hepatic DNL increased in response to acute intermittent hypoxia in humans, without alteration in glucose production or disposal. These observations were endorsed in a prolonged model of intermittent hypoxia in rodents using stable isotopic assessment of lipid metabolism. Changes in DNL were paralleled by increases in hepatic gene expression of acetyl CoA carboxylase 1 and fatty acid synthase. In human hepatoma cell lines, hypoxia increased both DNL and fatty acid uptake through HIF-1α and -2α dependent mechanisms. Conclusions: These studies provide robust evidence linking intermittent hypoxia and the regulation of DNL in both acute and sustained in vivo models of intermittent hypoxia, providing an important mechanistic link between hypoxia and NAFLD.

13.
Cardiovasc Res ; 118(14): 2946-2959, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34897412

RESUMEN

AIMS: In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely tuned sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge, and return pHi to normal. METHODS AND RESULTS: Following left ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl-/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinization when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate (to improve systemic buffering) had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) up-regulation and Slc4a2 (AE2) down-regulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had lower chloride, a solution manoeuvre that reduces the extent of pHi-decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterized as pH-sensors, ablated this pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS: Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities.


Asunto(s)
Bicarbonatos , Miocitos Cardíacos , Animales , Ratones , Miocitos Cardíacos/metabolismo , Concentración de Iones de Hidrógeno , Bicarbonatos/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Miocardio/metabolismo , Sodio/metabolismo , Cloruros/metabolismo , Cloruros/farmacología , Proteínas de Transporte de Membrana/metabolismo
14.
Circulation ; 144(21): 1664-1678, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34743560

RESUMEN

BACKGROUND: Transient pulmonary congestion during exercise is emerging as an important determinant of reduced exercise capacity in heart failure with preserved ejection fraction (HFpEF). We sought to determine whether an abnormal cardiac energetic state underpins this process. METHODS: We recruited patients across the spectrum of diastolic dysfunction and HFpEF (controls, n=11; type 2 diabetes, n=9; HFpEF, n=14; and severe diastolic dysfunction attributable to cardiac amyloidosis, n=9). Cardiac energetics were measured using phosphorus spectroscopy to define the myocardial phosphocreatine to ATP ratio. Cardiac function was assessed by cardiovascular magnetic resonance cine imaging and echocardiography and lung water using magnetic resonance proton density mapping. Studies were performed at rest and during submaximal exercise using a magnetic resonance imaging ergometer. RESULTS: Paralleling the stepwise decline in diastolic function across the groups (E/e' ratio; P<0.001) was an increase in NT-proBNP (N-terminal pro-brain natriuretic peptide; P<0.001) and a reduction in phosphocreatine/ATP ratio (control, 2.15 [2.09, 2.29]; type 2 diabetes, 1.71 [1.61, 1.91]; HFpEF, 1.66 [1.44, 1.89]; cardiac amyloidosis, 1.30 [1.16, 1.53]; P<0.001). During 20-W exercise, lower left ventricular diastolic filling rates (r=0.58; P<0.001), lower left ventricular diastolic reserve (r=0.55; P<0.001), left atrial dilatation (r=-0.52; P<0.001), lower right ventricular contractile reserve (right ventricular ejection fraction change, r=0.57; P<0.001), and right atrial dilation (r=-0.71; P<0.001) were all linked to lower phosphocreatine/ATP ratio. Along with these changes, pulmonary proton density mapping revealed transient pulmonary congestion in patients with HFpEF (+4.4% [0.5, 6.4]; P=0.002) and cardiac amyloidosis (+6.4% [3.3, 10.0]; P=0.004), which was not seen in healthy controls (-0.1% [-1.9, 2.1]; P=0.89) or type 2 diabetes without HFpEF (+0.8% [-1.7, 1.9]; P=0.82). The development of exercise-induced pulmonary congestion was associated with lower phosphocreatine/ATP ratio (r=-0.43; P=0.004). CONCLUSIONS: A gradient of myocardial energetic deficit exists across the spectrum of HFpEF. Even at low workload, this energetic deficit is related to markedly abnormal exercise responses in all 4 cardiac chambers, which is associated with detectable pulmonary congestion. The findings support an energetic basis for transient pulmonary congestion in HFpEF.


Asunto(s)
Ejercicio Físico/efectos adversos , Insuficiencia Cardíaca Diastólica/diagnóstico , Insuficiencia Cardíaca Diastólica/etiología , Hiperemia/complicaciones , Hiperemia/fisiopatología , Circulación Pulmonar , Anciano , Biomarcadores , Susceptibilidad a Enfermedades , Ecocardiografía , Prueba de Esfuerzo , Femenino , Pruebas de Función Cardíaca , Humanos , Hiperemia/diagnóstico , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Edema Pulmonar/diagnóstico , Índice de Severidad de la Enfermedad , Volumen Sistólico , Función Ventricular Izquierda
15.
Nat Commun ; 12(1): 3447, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103494

RESUMEN

Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.


Asunto(s)
Sistema Cardiovascular/embriología , Embrión de Mamíferos/patología , Deficiencias de Hierro , Animales , Aorta Torácica/anomalías , Biomarcadores/metabolismo , Diferenciación Celular , Vasos Coronarios/embriología , Vasos Coronarios/patología , Suplementos Dietéticos , Edema/patología , Embrión de Mamíferos/anomalías , Desarrollo Embrionario , Femenino , Perfilación de la Expresión Génica , Interacción Gen-Ambiente , Proteínas Fluorescentes Verdes/metabolismo , Hierro/metabolismo , Vasos Linfáticos/embriología , Vasos Linfáticos/patología , Ratones Endogámicos C57BL , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Penetrancia , Fenotipo , Embarazo , Transducción de Señal , Células Madre/patología , Transgenes , Tretinoina/metabolismo
16.
Magn Reson Med ; 85(6): 2978-2991, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33538063

RESUMEN

PURPOSE: Phosphorus saturation-transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ-ATP. The quantification of total ATP utilization is currently underexplored, as it requires simultaneous saturation of inorganic phosphate ( Pi ) and PCr. This is challenging, as currently available saturation pulses reduce the already-low γ-ATP signal present. METHODS: Using a hybrid optimal-control and Shinnar-Le Roux method, a quasi-adiabatic RF pulse was designed for the dual saturation of PCr and Pi to enable determination of total ATP utilization. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard-cosine DANTE saturation sequence, before being applied to perfused rat hearts at 11.7 T. RESULTS: The quasi-adiabatic pulse was insensitive to a >2.5-fold variation in B1 , producing equivalent saturation with a 53% reduction in delivered pulse power and a 33-fold reduction in spillover at the minimum effective B1 . This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30-45 minutes in the perfused rat heart. While the net synthesis flux (4.24 ± 0.8 mM/s, SEM) was not significantly different from degradation flux (6.88 ± 2 mM/s, P = .06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi -to-ATP measurement that may explain a trend suggesting a possible imbalance. CONCLUSIONS: This work demonstrates a novel quasi-adiabatic dual-saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.


Asunto(s)
Adenosina Trifosfato , Miocardio , Animales , Creatina Quinasa , Espectroscopía de Resonancia Magnética , Fosfocreatina , Ratas
18.
MAGMA ; 34(1): 49-56, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32910316

RESUMEN

OBJECTIVES: To enhance detection of the products of hyperpolarized [2-13C]dihydroxyacetone metabolism for assessment of three metabolic pathways in the liver in vivo. Hyperpolarized [2-13C]DHAc emerged as a promising substrate to follow gluconeogenesis, glycolysis and the glycerol pathways. However, the use of [2-13C]DHAc in vivo has not taken off because (i) the chemical shift range of [2-13C]DHAc and its metabolic products span over 144 ppm, and (ii) 1H decoupling is required to increase spectral resolution and sensitivity. While these issues are trivial for high-field vertical-bore NMR spectrometers, horizontal-bore small-animal MR scanners are seldom equipped for such experiments. METHODS: Real-time hepatic metabolism of three fed mice was probed by 1H-decoupled 13C-MR following injection of hyperpolarized [2-13C]DHAc. The spectra of [2-13C]DHAc and its metabolic products were acquired in a 7 T small-animal MR scanner using three purpose-designed spectral-spatial radiofrequency pulses that excited a spatial bandwidth of 8 mm with varying spectral bandwidths and central frequencies (chemical shifts). RESULTS: The metabolic products detected in vivo include glycerol 3-phosphate, glycerol, phosphoenolpyruvate, lactate, alanine, glyceraldehyde 3-phosphate and glucose 6-phosphate. The metabolite-to-substrate ratios were comparable to those reported previously in perfused liver. DISCUSSION: Three metabolic pathways can be probed simultaneously in the mouse liver in vivo, in real time,  using hyperpolarized DHAc.


Asunto(s)
Dihidroxiacetona/química , Animales , Isótopos de Carbono , Gluconeogénesis , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Ratones , Protones
19.
Magn Reson Med ; 85(2): 790-801, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32894618

RESUMEN

PURPOSE: Hyperpolarized imaging experiments have conflicting requirements of high spatial, temporal, and spectral resolution. Spectral-spatial RF excitation has been shown to form an attractive magnetization-efficient method for hyperpolarized imaging, but the optimum readout strategy is not yet known. METHODS: In this work, we propose a novel 3D hybrid-shot spiral sequence which features two constant density regions that permit the retrospective reconstruction of either high spatial or high temporal resolution images post hoc, (adaptive spatiotemporal imaging) allowing greater flexibility in acquisition and reconstruction. RESULTS: We have implemented this sequence, both via simulation and on a preclinical scanner, to demonstrate its feasibility, in both a 1H phantom and with hyperpolarized 13C pyruvate in vivo. CONCLUSIONS: This sequence forms an attractive method for acquiring hyperpolarized imaging datasets, providing adaptive spatiotemporal imaging to ameliorate the conflict of spatial and temporal resolution, with significant potential for clinical translation.


Asunto(s)
Imagen Eco-Planar , Ácido Pirúvico , Isótopos de Carbono , Imagenología Tridimensional , Imagen por Resonancia Magnética , Fantasmas de Imagen , Estudios Retrospectivos
20.
Front Physiol ; 12: 782745, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069242

RESUMEN

Doxorubicin (DOX) is a successful chemotherapeutic widely used for the treatment of a range of cancers. However, DOX can have serious side-effects, with cardiotoxicity and hepatotoxicity being the most common events. Oxidative stress and changes in metabolism and bioenergetics are thought to be at the core of these toxicities. We have previously shown in a clinically-relevant rat model that a low DOX dose of 2 mg kg-1 week-1 for 6 weeks does not lead to cardiac functional decline or changes in cardiac carbohydrate metabolism, assessed with hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopy (MRS). We now set out to assess whether there are any signs of liver damage or altered liver metabolism using this subclinical model. We found no increase in plasma alanine aminotransferase (ALT) activity, a measure of liver damage, following DOX treatment in rats at any time point. We also saw no changes in liver carbohydrate metabolism, using hyperpolarized [1-13C]pyruvate MRS. However, using metabolomic analysis of liver metabolite extracts at the final time point, we found an increase in most acyl-carnitine species as well as increases in high energy phosphates, citrate and markers of oxidative stress. This may indicate early signs of steatohepatitis, with increased and decompensated fatty acid uptake and oxidation, leading to oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...