Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(22): 13179-13193, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871450

RESUMEN

Cellular and virus-coded long non-coding (lnc) RNAs support multiple roles related to biological and pathological processes. Several lncRNAs sequester their 3' termini to evade cellular degradation machinery, thereby supporting disease progression. An intramolecular triplex involving the lncRNA 3' terminus, the element for nuclear expression (ENE), stabilizes RNA transcripts and promotes persistent function. Therefore, such ENE triplexes, as presented here in Kaposi's sarcoma-associated herpesvirus (KSHV) polyadenylated nuclear (PAN) lncRNA, represent targets for therapeutic development. Towards identifying novel ligands targeting the PAN ENE triplex, we screened a library of immobilized small molecules and identified several triplex-binding chemotypes, the tightest of which exhibits micromolar binding affinity. Combined biophysical, biochemical, and computational strategies localized ligand binding to a platform created near a dinucleotide bulge at the base of the triplex. Crystal structures of apo (3.3 Å) and ligand-soaked (2.5 Å) ENE triplexes, which include a stabilizing basal duplex, indicate significant local structural rearrangements within this dinucleotide bulge. MD simulations and a modified nucleoside analog interference technique corroborate the role of the bulge and the base of the triplex in ligand binding. Together with recently discovered small molecules that reduce nuclear MALAT1 lncRNA levels by engaging its ENE triplex, our data supports the potential of targeting RNA triplexes with small molecules.


Asunto(s)
Herpesvirus Humano 8/metabolismo , Nucleótidos/metabolismo , Poli A/metabolismo , ARN Largo no Codificante/metabolismo , ARN Viral/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Secuencia de Bases , Cristalografía por Rayos X , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Conformación de Ácido Nucleico , Nucleótidos/genética , Poli A/química , Poli A/genética , Estabilidad del ARN/genética , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , ARN Viral/química , ARN Viral/genética , Sarcoma de Kaposi/virología , Bibliotecas de Moléculas Pequeñas/química
2.
Molecules ; 25(19)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992516

RESUMEN

Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral reverse transcriptase with epsilon (ε), a cis-acting regulatory signal located at the 5' terminus of pre-genomic RNA (pgRNA), and several host-encoded chaperone proteins. Binding of the viral polymerase (P protein) to ε is necessary for pgRNA encapsidation and synthesis of a short primer covalently attached to its terminal domain. Although we identified small molecules that recognize HBV ε RNA, these failed to inhibit protein-primed DNA synthesis. However, since initiation of HBV (-) strand DNA synthesis occurs within a complex of viral and host components (e.g., Hsp90, DDX3 and APOBEC3G), we considered an alternative therapeutic strategy of allosteric inhibition by disrupting the initiation complex or modifying its topology. To this end, we show here that 3,7-dihydroxytropolones (3,7-dHTs) can inhibit HBV protein-primed DNA synthesis. Since DNA polymerase activity of a ribonuclease (RNase H)-deficient HBV reverse transcriptase that otherwise retains DNA polymerase function is also abrogated, this eliminates direct involvement of RNase (ribonuclease) H activity of HBV reverse transcriptase and supports the notion that the HBV initiation complex might be therapeutically targeted. Modeling studies also provide a rationale for preferential activity of 3,7-dHTs over structurally related α-hydroxytropolones (α-HTs).


Asunto(s)
Replicación del ADN/efectos de los fármacos , ADN Viral/metabolismo , Virus de la Hepatitis B/fisiología , ARN Viral/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Tropolona/análogos & derivados , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos , Desaminasa APOBEC-3G/metabolismo , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Tropolona/farmacología
3.
Artículo en Inglés | MEDLINE | ID: mdl-30061278

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma, belongs to the Herpesviridae family, whose members employ a multicomponent terminase to resolve nonparametric viral DNA into genome-length units prior to their packaging. Homology modeling of the ORF29 C-terminal nuclease domain (pORF29C) and bacteriophage Sf6 gp2 have suggested an active site clustered with four acidic residues, D476, E550, D661, and D662, that collectively sequester the catalytic divalent metal (Mn2+) and also provided important insight into a potential inhibitor binding mode. Using this model, we have expressed, purified, and characterized the wild-type pORF29C and variants with substitutions at the proposed active-site residues. Differential scanning calorimetry demonstrated divalent metal-induced stabilization of wild-type (WT) and D661A pORF29C, consistent with which these two enzymes exhibited Mn2+-dependent nuclease activity, although the latter mutant was significantly impaired. Thermal stability of WT and D661A pORF29C was also enhanced by binding of an α-hydroxytropolone (α-HT) inhibitor shown to replace divalent metal at the active site. For the remaining mutants, thermal stability was unaffected by divalent metal or α-HT binding, supporting their role in catalysis. pORF29C nuclease activity was also inhibited by two classes of small molecules reported to inhibit HIV RNase H and integrase, both of which belong to the superfamily of nucleotidyltransferases. Finally, α-HT inhibition of KSHV replication suggests ORF29 nuclease function as an antiviral target that could be combined with latency-activating compounds as a shock-and-kill antiviral strategy.


Asunto(s)
Endonucleasas/química , Endonucleasas/metabolismo , Herpesvirus Humano 8/enzimología , Sarcoma de Kaposi/virología , Rastreo Diferencial de Calorimetría , Dominio Catalítico , ADN Viral/genética , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Activación Enzimática/efectos de los fármacos , Inhibidores de Integrasa VIH/farmacología , Herpesvirus Humano 8/genética , Integrasas/genética , Mutagénesis Sitio-Dirigida , Sistemas de Lectura Abierta/genética , Estructura Secundaria de Proteína , Ribonucleasa H/genética
4.
Nucleic Acids Res ; 45(11): 6805-6821, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28383682

RESUMEN

Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.


Asunto(s)
Herpesvirus Humano 8/genética , ARN Mensajero/metabolismo , ARN Nuclear/metabolismo , ARN Viral/metabolismo , Sitios de Unión , Núcleo Celular/metabolismo , Núcleo Celular/virología , Citoplasma/metabolismo , Citoplasma/virología , Herpesvirus Humano 8/metabolismo , Humanos , Secuencias Invertidas Repetidas , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , Unión Proteica , ARN Mensajero/genética , ARN Nuclear/genética , ARN Viral/genética , Células Tumorales Cultivadas , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
5.
Viruses ; 9(3)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28294975

RESUMEN

Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the Saccharomyces cerevisiae long terminal repeat (LTR)-retrotransposon Ty3 genome is guided by equivalent events that, while generally similar, show many unique and subtle differences relative to the retroviral counterparts. Until only recently, our knowledge of RT structure and function was guided by a vast body of literature on the human immunodeficiency virus (HIV) enzyme. Although the recently-solved structure of Ty3 RT in the presence of an RNA/DNA hybrid adds little in terms of novelty to the mechanistic basis underlying DNA polymerase and ribonuclease H activity, it highlights quite remarkable topological differences between retroviral and LTR-retrotransposon RTs. The theme of overall similarity but distinct differences extends to the priming mechanisms used by Ty3 RT to initiate (-) and (+) strand DNA synthesis. The unique structural organization of the retrotransposon enzyme and interaction with its nucleic acid substrates, with emphasis on polypurine tract (PPT)-primed initiation of (+) strand synthesis, is the subject of this review.


Asunto(s)
ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos , Transcripción Reversa , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Secuencias Repetidas Terminales , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
Methods Enzymol ; 566: 89-110, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26791977

RESUMEN

Proton assignment of nuclear magnetic resonance (NMR) spectra of homopyrimidine/homopurine tract oligonucleotides becomes extremely challenging with increasing helical length due to severe cross-peak overlap. As an alternative to the more standard practice of (15)N and (13)C labeling of oligonucleotides, here, we describe a method for assignment of highly redundant DNA sequences that uses single-site substitution of the thymine isostere 2,4-difluoro-5-methylbenzene (dF). The impact of this approach in facilitating the assignment of intractable spectra and analyzing oligonucleotide structure and dynamics is demonstrated using A-tract and TATA box DNA and two polypurine tract-containing RNA:DNA hybrids derived from HIV-1 and the Saccharomyces cerevisiae long-terminal repeat-containing retrotransposon Ty3. Only resonances proximal to the site of dF substitution exhibit sizable chemical shift changes, providing spectral dispersion while still allowing chemical shift mapping of resonances from unaffected residues distal to the site of modification directly back to the unmodified sequence. It is further illustrated that dF incorporation can subtly alter the conformation and dynamics of homopyrimidine/homopurine tract oligonucleotides, and how these NMR observations can be correlated, in the cases of the TATA box DNA, with modulation in the TATA box-binding protein interaction using an orthogonal gel assay.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Conformación de Ácido Nucleico , Oligonucleótidos/química , Proteína de Unión a TATA-Box/química , Secuencia de Bases/genética , Purinas/química , Pirimidinas/química , ARN/química , Saccharomyces cerevisiae/química , TATA Box/genética
7.
J Virol ; 89(23): 12058-69, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26401032

RESUMEN

UNLABELLED: Human immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively. In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle. IMPORTANCE: To establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts with RT, but the importance of this interaction during HIV-1 replication has not been fully characterized. In this study, we have established the biological significance of the HIV-1 RT-IN interaction during the viral life cycle by demonstrating that altering the RT-binding surface on IN disrupts both reverse transcription and viral replication. These findings contribute to our understanding of the RT-IN binding mechanism, as well as indicate that the RT-IN interaction can be exploited as a new antiviral drug target.


Asunto(s)
Integrasa de VIH/metabolismo , Transcriptasa Inversa del VIH/metabolismo , VIH-1/fisiología , Transcripción Reversa/fisiología , Replicación Viral/fisiología , Sustitución de Aminoácidos/genética , Western Blotting , Cartilla de ADN/genética , Escherichia coli , Integrasa de VIH/genética , Transcriptasa Inversa del VIH/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Nat Struct Mol Biol ; 21(4): 389-96, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24608367

RESUMEN

Retrotransposons are a class of mobile genetic elements that replicate by converting their single-stranded RNA intermediate to double-stranded DNA through the combined DNA polymerase and ribonuclease H (RNase H) activities of the element-encoded reverse transcriptase (RT). Although a wealth of structural information is available for lentiviral and gammaretroviral RTs, equivalent studies on counterpart enzymes of long terminal repeat (LTR)-containing retrotransposons, from which they are evolutionarily derived, is lacking. In this study, we report the first crystal structure of a complex of RT from the Saccharomyces cerevisiae LTR retrotransposon Ty3 in the presence of its polypurine tract-containing RNA-DNA hybrid. In contrast to its retroviral counterparts, Ty3 RT adopts an asymmetric homodimeric architecture whose assembly is substrate dependent. Moreover, our structure and biochemical data suggest that the RNase H and DNA polymerase activities are contributed by individual subunits of the homodimer.


Asunto(s)
ADN/química , ADN Polimerasa Dirigida por ARN/química , Retroelementos , Ribonucleasa H/química , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión , Cristalografía por Rayos X , ADN/genética , Dimerización , Modelos Moleculares , Estructura Terciaria de Proteína , ADN Polimerasa Dirigida por ARN/fisiología , Ribonucleasa H/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
10.
J Biol Chem ; 288(22): 16177-84, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23595992

RESUMEN

Recent crystallographic analysis of p66/p51 human immunodeficiency virus (HIV) type 1 reverse transcriptase (RT) complexed with a non-polypurine tract RNA/DNA hybrid has illuminated novel and important contacts between structural elements at the C terminus of the noncatalytic p51 subunit and the nucleic acid duplex in the vicinity of the ribonuclease H (RNase H) active site. In particular, a short peptide spanning residues Phe-416-Pro-421 was shown to interact with the DNA strand, cross the minor groove of the helix, and then form Van der Waals contacts with the RNA strand adjacent to the scissile phosphate. At the base of the adjoining α-helix M', Tyr-427 forms a hydrogen bond with Asn-348, the latter of which, when mutated to Ile, is implicated in resistance to both nucleoside and non-nucleoside RT inhibitors. Based on our structural data, we analyzed the role of the p51 C terminus by evaluating selectively mutated p66/p51 heterodimers carrying (i) p51 truncations that encroach on α-M', (ii) alterations that interrupt the Asn-348-Tyr-427 interaction, and (iii) alanine substitutions throughout the region Phe-416-Pro-421. Collectively, our data support the notion that the p51 C terminus makes an important contribution toward hybrid binding and orienting the RNA strand for catalysis at the RNase H active site.


Asunto(s)
ADN Viral/química , Transcriptasa Inversa del VIH/química , VIH-1/enzimología , Ácidos Nucleicos Heterodúplex/química , ARN Viral/química , Sustitución de Aminoácidos , Dominio Catalítico , ADN Viral/genética , ADN Viral/metabolismo , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , VIH-1/genética , Humanos , Hidrólisis , Mutación Missense , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Estructura Secundaria de Proteína , ARN Viral/genética , ARN Viral/metabolismo
11.
Nat Struct Mol Biol ; 20(2): 230-236, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23314251

RESUMEN

Hundreds of structures of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase (RT) have been determined, but only one contains an RNA/DNA hybrid. Here we report three structures of HIV-1 RT complexed with a non-nucleotide RT inhibitor (NNRTI) and an RNA/DNA hybrid. In the presence of an NNRTI, the RNA/DNA structure differs from all prior nucleic acid-RT structures including the RNA/DNA hybrid. The enzyme structure also differs from all previous RT-DNA complexes. Thus, the hybrid has ready access to the RNase-H active site. These observations indicate that an RT-nucleic acid complex may adopt two structural states, one competent for DNA polymerization and the other for RNA degradation. RT mutations that confer drug resistance but are distant from the inhibitor-binding sites often map to the unique RT-hybrid interface that undergoes conformational changes between two catalytic states.


Asunto(s)
VIH-1/enzimología , Modelos Moleculares , Complejos Multiproteicos/química , Ácidos Nucleicos Heterodúplex/metabolismo , Conformación Proteica , Estabilidad del ARN/genética , ADN Polimerasa Dirigida por ARN/química , Inhibidores de la Transcriptasa Inversa/química , Cristalización , ADN Viral/metabolismo , Complejos Multiproteicos/metabolismo , ARN Viral/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Inhibidores de la Transcriptasa Inversa/metabolismo , Difracción de Rayos X
12.
Virus Res ; 171(2): 346-55, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23149014

RESUMEN

During (-) strong-stop DNA [(-) SSDNA] synthesis, RNase H cleavage of genomic viral RNA generates small 5'-terminal RNA fragments (14-18 nt) that remain annealed to the DNA. Unless these fragments are removed, the minus-strand transfer reaction, required for (-) SSDNA elongation, cannot occur. Here, we describe the mechanism of 5'-terminal RNA removal and the roles of HIV-1 nucleocapsid protein (NC) and RNase H cleavage in this process. Using an NC-dependent system that models minus-strand transfer, we show that the presence of short terminal fragments pre-annealed to (-) SSDNA has no impact on strand transfer, implying efficient fragment removal. Moreover, in reactions with an RNase H(-) reverse transcriptase mutant, NC alone is able to facilitate fragment removal, albeit less efficiently than in the presence of both RNase H activity and NC. Results obtained from novel electrophoretic gel mobility shift and Förster Resonance Energy Transfer assays, which each directly measure RNA fragment release from a duplex in the absence of DNA synthesis, demonstrate for the first time that the architectural integrity of NC's zinc finger (ZF) domains is absolutely required for this reaction. This suggests that NC's helix destabilizing activity (associated with the ZFs) facilitates strand exchange through the displacement of these short terminal RNAs by the longer 3' acceptor RNA, which forms a more stable duplex with (-) SSDNA. Taken together with previously published results, we conclude that NC-mediated fragment removal is linked mechanistically with selection of the correct primer for plus-strand DNA synthesis and tRNA removal step prior to plus-strand transfer. Thus, HIV-1 has evolved a single mechanism for these RNA removal reactions that are critical for successful reverse transcription.


Asunto(s)
ADN Viral/genética , VIH-1/genética , Procesamiento Postranscripcional del ARN , ARN Viral/genética , Transcripción Reversa , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , ADN Viral/química , ADN Viral/metabolismo , Regulación Viral de la Expresión Génica , VIH-1/química , VIH-1/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Dedos de Zinc , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
13.
J Biol Chem ; 287(6): 4066-75, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22105069

RESUMEN

The vinylogous urea, NSC727447, was proposed to allosterically inhibit ribonuclease H (RNase H) activity of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) by interacting with the thumb subdomain of its non-catalytic p51 subunit. Proximity of the p51 thumb to the p66 RNase H domain implied that inhibitor binding altered active site geometry, whereas protein footprinting suggested a contribution from α-helix I residues Cys-280 and Lys-281. To more thoroughly characterize the vinylogous urea binding site, horizontal alanine scanning mutagenesis between p51 residues Lys-275 and Thr-286 (comprising α-helix I and portions of the neighboring αH/αI and αI/αJ connecting loops) was combined with a limited vertical scan of Cys-280. A contribution from Cys-280 was strengthened by our observation that all substitutions at this position rendered selectively mutated, reconstituted p66/p51 heterodimers ∼45-fold less sensitive to inhibition. An ∼19-fold reduced IC(50) for p51 mutant T286A coupled with a 2-8-fold increased IC(50) when intervening residues were substituted supports our original proposal of p51 α-helix I as the vinylogous urea binding site. In contrast to these allosteric inhibitors, mutant enzymes retained equivalent sensitivity to the natural product α-hydroxytropolone inhibitor manicol, which x-ray crystallography has demonstrated functions by chelating divalent metal at the p66 RNase H active site. Finally, reduced DNA strand-transfer activity together with increased vinylogous urea sensitivity of p66/p51 heterodimers containing short p51 C-terminal deletions suggests an additional role for the p51 C terminus in nucleic acid binding that is compromised by inhibitor binding.


Asunto(s)
Inhibidores Enzimáticos/química , VIH-1/enzimología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/química , Tiofenos/química , Sustitución de Aminoácidos , Línea Celular , Cristalografía por Rayos X , VIH-1/genética , Humanos , Mutagénesis , Mutación Missense , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/genética
14.
Nat Struct Mol Biol ; 17(12): 1453-60, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21102446

RESUMEN

Human immunodeficiency virus (HIV) initiates reverse transcription of its viral RNA (vRNA) genome from a cellular tRNA(3)(Lys) primer. This process is characterized by a slow initiation phase with specific pauses, followed by a fast elongation phase. We report a single-molecule study that monitors the dynamics of individual initiation complexes, comprised of vRNA, tRNA and HIV reverse transcriptase (RT). RT transitions between two opposite binding orientations on tRNA-vRNA complexes, and the prominent pausing events are related to RT binding in a flipped orientation opposite to the polymerization-competent configuration. A stem-loop structure within the vRNA is responsible for maintaining the enzyme predominantly in this flipped orientation. Disruption of the stem-loop structure triggers the initiation-to-elongation transition. These results highlight the important role of the structural dynamics of the initiation complex in directing transitions between early reverse transcription phases.


Asunto(s)
VIH-1/genética , ARN Viral/química , Transcripción Reversa/fisiología , ADN/biosíntesis , Transferencia Resonante de Energía de Fluorescencia , Modelos Genéticos , Conformación de Ácido Nucleico , ADN Polimerasa Dirigida por ARN/fisiología , Replicación Viral
15.
J Biol Chem ; 284(12): 7931-9, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19150986

RESUMEN

Integrase (IN) from human immunodeficiency virus, type 1 (HIV-1) exerts pleiotropic effects in the viral replication cycle. Besides integration, IN mutations can impact nuclear import, viral maturation, and reverse transcription. IN and reverse transcriptase (RT) interact in vitro, and the IN C-terminal domain (CTD) is both necessary and sufficient for binding RT. We used nuclear magnetic resonance spectroscopy to identify a putative RT-binding surface on the IN CTD, and surface plasmon resonance to obtain kinetic parameters and the binding affinity for the IN-RT interaction. An IN K258A substitution that disrupts reverse transcription in infected cells is located at the putative RT-binding surface, and we found that this substitution substantially weakens IN CTD-RT interactions. We also identified two additional IN amino acid substitutions located at the putative RT-binding surface (W243E and V250E) that significantly impair viral replication in tissue culture. These results strengthen the notion that IN-RT interactions are biologically relevant during HIV-1 replication and also provide insights into this interaction at the molecular level.


Asunto(s)
Integrasa de VIH/química , Transcriptasa Inversa del VIH/química , VIH-1/fisiología , Transcripción Reversa/fisiología , Replicación Viral/fisiología , Sustitución de Aminoácidos , Sitios de Unión/fisiología , Línea Celular , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , Humanos , Mutación Missense , Resonancia Magnética Nuclear Biomolecular , Mapeo Peptídico , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología
16.
ACS Chem Biol ; 3(10): 635-44, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18831589

RESUMEN

High-throughput screening of National Cancer Institute libraries of synthetic and natural compounds identified the vinylogous ureas 2-amino-5,6,7,8-tetrahydro-4 H-cyclohepta[ b]thiophene-3-carboxamide (NSC727447) and N-[3-(aminocarbonyl)-4,5-dimethyl-2-thienyl]-2-furancarboxamide (NSC727448) as inhibitors of the ribonuclease H (RNase H) activity of HIV-1 and HIV-2 reverse transcriptase (RT). A Yonetani-Theorell analysis demonstrated that NSC727447, and the active-site hydroxytropolone RNase H inhibitor beta-thujaplicinol were mutually exclusive in their interaction with the RNase H domain. Mass spectrometric protein footprinting of the NSC727447 binding site indicated that residues Cys280 and Lys281 in helix I of the thumb subdomain of p51 were affected by ligand binding. Although DNA polymerase and pyrophosphorolysis activities of HIV-1 RT were less sensitive to inhibition by NSC727447, protein footprinting indicated that NSC727447 occupied the equivalent region of the p66 thumb. Site-directed mutagenesis using reconstituted p66/p51 heterodimers substituted with natural or non-natural amino acids indicates that altering the p66 RNase H primer grip significantly affects inhibitor sensitivity. NSC727447 thus represents a novel class of RNase H antagonists with a mechanism of action differing from active site, divalent metal-chelating inhibitors that have been reported.


Asunto(s)
Furanos/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Inhibidores de la Transcriptasa Inversa/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Tiofenos/farmacología , Urea/análogos & derivados , Sitios de Unión , Técnicas Químicas Combinatorias , Furanos/química , Transcriptasa Inversa del VIH/química , Humanos , Inhibidores de la Transcriptasa Inversa/química , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/química , Tiofenos/química
17.
Nucleic Acids Res ; 36(8): 2799-810, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18400780

RESUMEN

The interactions of archetypical nucleic acid ligands with the HIV-1 polypurine tract (PPT) RNA:DNA hybrid, as well as analogous DNA:DNA, RNA:RNA and swapped hybrid substrates, were used to probe structural features of the PPT that contribute to its specific recognition and processing by reverse transcriptase (RT). Results from intercalative and groove-binding ligands indicate that the wild-type PPT hybrid does not contain any strikingly unique groove geometries and/or stacking arrangements that might contribute to the specificity of its interaction with RT. In contrast, neomycin bound preferentially and selectively to the PPT near the 5'(rA)(4):(dT)(4) tract and the 3' PPT-U3 junction. Nuclear magnetic resonance data from a complex between HIV-1 RT and the PPT indicate RT contacts within the same regions highlighted on the PPT by neomycin. These observations, together with the fact that the sites are correctly spaced to allow interaction with residues in the ribonuclease H (RNase H) active site and thumb subdomain of the p66 RT subunit, suggest that despite the long cleft employed by RT to make contact with nucleic acids substrates, these sites provide discrete binding units working in concert to determine not only specific PPT recognition, but also its orientation on the hybrid structure.


Asunto(s)
ADN Viral/química , VIH-1/genética , ARN Viral/química , Aminoglicósidos/química , Sitios de Unión , Framicetina/química , Ligandos , Espectrometría de Masas , Resonancia Magnética Nuclear Biomolecular , Sondas de Ácido Nucleico , Purinas/química , Termodinámica
18.
Nucleic Acids Res ; 32(15): 4687-95, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15342789

RESUMEN

In order to determine the contribution of modified bases on the efficiency with which tRNA(Lys,3) is used in vitro as the HIV-1 replication primer, the properties of synthetic derivatives prepared by three independent methods were compared to the natural, i.e. fully modified, tRNA. When prepared directly by in vitro run-off transcription, we show here that the predominant tRNA species is 77 nt, representing a non-templated addition of a single nucleotide. As a consequence, this aberrant tRNA inefficiently primes (-) strand strong stop DNA synthesis from the primer binding site (PBS) on the HIV-1 viral RNA genome to which it must hybridize. In contrast, correctly sized tRNA(Lys,3) can be prepared by (i) total chemical synthesis and ligation of 'half' tRNAs, (ii) transcription of a cassette whose DNA template contained strategically placed 2'-O-Methyl-containing ribonucleotides and (iii) processing from a larger precursor by means of targeted cleavage with Escherichia coli RNase H. When each of these 76 nt tRNAs was supplemented into a (-) strand strong stop DNA synthesis reaction utilizing the HXB2 strain of HIV-1, the amount of product obtained was comparable to that from the fully modified counterpart. Parallel assays monitoring early events in (-) strand strong stop DNA synthesis using either the HXB2 or Mal strain of HIV-1 RNA as the template indicated little difference in the pattern or total product amount when primed with either natural or synthetic tRNA(Lys,3). In addition, nuclease mapping of PBS-bound tRNA suggests inter-molecular base pairing between bases of the tRNA anticodon domain and the U-rich U5-IR loop of the viral 5' leader region is less stable on the HIV-1(HXB2) genome than the HIV-1(Mal) isolate.


Asunto(s)
Cartilla de ADN/química , VIH-1/genética , ARN de Transferencia de Lisina/química , Replicación Viral , ADN Viral/biosíntesis , Genoma Viral , VIH-1/metabolismo , ARN de Transferencia de Lisina/biosíntesis , ARN de Transferencia de Lisina/genética , Ribonucleasa H/metabolismo
19.
J Virol ; 77(13): 7623-34, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12805462

RESUMEN

Human immunodeficiency virus type 2 (HIV-2) infection is a serious problem in West Africa and Asia. However, there have been relatively few studies of HIV-2 reverse transcriptase (RT), a potential target for antiviral therapy. Detailed knowledge of HIV-2 RT activities is critical for development of specific high-throughput screening assays of potential inhibitors. Here, we have conducted a systematic evaluation of HIV-2 RT function, using assays that model specific steps in reverse transcription. Parallel studies were performed with HIV-1 RT. In general, under standard assay conditions, the polymerase and RNase H activities of the two enzymes were comparable. However, when the RT concentration was significantly reduced, HIV-2 RT was less active than the HIV-1 enzyme. HIV-2 RT was also impaired in its ability to catalyze secondary RNase H cleavage in assays that mimic tRNA primer removal during plus-strand transfer and degradation of genomic RNA fragments during minus-strand DNA synthesis. In addition, initiation of plus-strand DNA synthesis was much less efficient with HIV-2 RT than with HIV-1 RT. This may reflect architectural differences in the primer grip regions in the p66 (HIV-1) and p68 (HIV-2) palm subdomains of the two enzymes. The implications of our findings for antiviral therapy are discussed.


Asunto(s)
VIH-2/enzimología , ADN Polimerasa Dirigida por ARN/metabolismo , Transcripción Genética , Secuencia de Bases , Cartilla de ADN , Replicación del ADN , ADN Viral/biosíntesis , Transcriptasa Inversa del VIH , VIH-2/genética , Ribonucleasa H/metabolismo
20.
Proc Natl Acad Sci U S A ; 99(25): 15988-93, 2002 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-12461175

RESUMEN

We have devised a high-resolution protein footprinting methodology to dissect HIV-1 reverse transcriptase (RT) contacts to the viral RNA:tRNA complex. The experimental strategy included modification of surface-exposed lysines in RT and RT-viral RNA:tRNA complexes by the primary amine selective reagent NHS-biotin, SDSPAGE separation of p66 and p51 polypeptides, in gel proteolysis, and comparative mass spectrometric analysis of peptide fragments. The lysines modified in free RT but protected from biotinylation in the nucleoprotein complex were readily revealed by this approach. Results of a control experiment examining the RT-DNA:DNA complex were in excellent agreement with the crystal structure data on the identical complex. Probing the RT-viral RNA:tRNA complex revealed that a majority of protein contacts are located in the primer-template binding cleft in common with the RT-DNA:DNA and RT-RNA:DNA species. However, our footprinting data indicate that the p66 fingers subdomain makes additional contacts to the viral RNA:tRNA specific for this complex and not detected with DNA:DNA. The protein footprinting method described herein has a generic application for high-resolution solution structural studies of multiprotein-nucleic acid contacts.


Asunto(s)
Biotina/análogos & derivados , Biotina/farmacología , Transcriptasa Inversa del VIH/química , Huella de Proteína/métodos , ARN de Transferencia de Lisina/química , ARN Viral/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Succinimidas/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Biotinilación , ADN/química , Transcriptasa Inversa del VIH/efectos de los fármacos , Transcriptasa Inversa del VIH/metabolismo , Humanos , Indicadores y Reactivos , Lisina/química , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , ARN de Transferencia de Lisina/metabolismo , ARN Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...