Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 874: 162305, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36801409

RESUMEN

Tire and road wear particles (TRWP) are produced by abrasion at the interface of the pavement and tread surface and contain tread rubber with road mineral encrustations. Quantitative thermoanalytical methods capable of estimating TRWP concentrations are needed to assess the prevalence and environmental fate of these particles. However, the presence of complex organic constituents in sediment and other environmental samples presents a challenge to the reliable determination of TRWP concentrations using current pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) methodologies. We are unaware of a published study evaluating pretreatment and other method refinements for microfurnace Py-GC-MS analysis of the elastomeric polymers in TRWP including polymer-specific deuterated internal standards as specified in ISO Technical Specification (ISO/TS) 20593:2017 and ISO/TS 21396:2017. Thus, potential method refinements were evaluated for microfurnace Py-GC-MS, including chromatography parameter modification, chemical pretreatment, and thermal desorption for cryogenically-milled tire tread (CMTT) samples in an artificial sediment matrix and a sediment field sample. The tire tread dimer markers used for quantification were 4-vinylcyclohexene (4-VCH), a marker for styrene-butadiene rubber (SBR) and butadiene rubber (BR), 4-phenylcyclohexene (4-PCH), a marker for SBR, and dipentene (DP), a marker for natural rubber (NR) or isoprene. The resultant modifications included optimization of GC temperature and mass analyzer settings, along with sample pretreatment with potassium hydroxide (KOH) and thermal desorption. Peak resolution was improved while minimizing matrix interferences with overall accuracy and precision consistent with those typically observed in environmental sample analysis. The initial method detection limit for an artificial sediment matrix was approximately 180 mg/kg for a 10 mg sediment sample. A sediment and a retained suspended solids sample were also analyzed to illustrate the applicability of microfurnace Py-GC-MS towards complex environmental sample analysis. These refinements should help encourage the adoption of pyrolysis techniques for mass-based measurements of TRWP in environmental samples both near and distant from roadways.

2.
Toxicol Rep ; 9: 238-249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198407

RESUMEN

Recently, the U.S. House of Representatives reported on the presence of heavy metals in raw ingredients used in baby foods and in finished baby food products themselves. In light of these concerns, this study aimed to evaluate potential risks associated with the presence of heavy metals in baby food products. We analyzed 36 baby food samples representing four ingredient categories (fruit; leguminous vegetable; root vegetable; or grain) for arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb). We assessed the potential lifetime cancer and non-cancer health risks posed to infants and toddlers following daily consumption of these chemicals in each food type, based on established daily food-specific ingestion rates. Daily doses were compared against selected reference values and oral slope factors to determine non-cancer hazard indices (HIs) and lifetime cancer risks. Hazard indices indicated a potential for non-cancer risk (e.g., HIs > 1.0) under only a few exposure scenarios, including for As and Pb under selected product type and age/concentration assumptions. Increases in lifetime cancer risks for all analytes across the ingredient categories evaluated ranged from 3.75 × 10-5 to 5.54 × 10-5; cancer risks were primarily driven by As from grain products. Though a limited set of exposure scenarios indicated a potential for health risk, the exposure assumptions in this assessment were conservative, and the heavy metal concentrations we found in baby foods are similar to those observed in similar whole foods. Based on these findings and the limited scenarios under which risks were identified, this study indicates that an infant's typical intake of baby food is unlikely to pose health risks from heavy metals above accepted tolerable risk levels under most exposure scenarios.

3.
Food Chem Toxicol ; 155: 112421, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34280473

RESUMEN

Chlorpyrifos (CPF) is one of the most widely-used pesticides globally for agricultural purposes. Certain occupations (e.g., farmers, military) are at an increased risk for high-dose exposure to CPF, which can lead to seizures and irreversible brain injury. Workers with the highest risk of exposure typically experience increased circulating cortisol levels, which is related to physiological stress. To better represent this exposure scenario, a mouse model utilized exogenous administration of corticosterone (CORT; high physiologic stress mimic) in combination with chlorpyrifos oxon (CPO; oxon metabolite of CPF); this combination increases neuroinflammation post-exposure. In the present study adult male C57BL/6J mice were given CORT (200 µg/mL) in drinking water for seven days followed by a single intraperitoneal injection of CPO (8.0 mg/kg) on day eight, and euthanized 0.5, 2, and 24 h post-injection. Ten post-translationally modified proteins were measured in the frontal cortex and striatum to evaluate brain region-specific effects. The spatiotemporal response to CORT + CPO sequentially activated phosphoproteins (p-ERK1/2, p-MEK1/2, p-JNK) involved in mitogen-activated protein kinase (MAPK) signaling. Observed p-ZAP70 responses further integrated MAPK signaling and provided a spatiotemporal connection between protein phosphorylation and neuroinflammation. This study provides insight into the spatiotemporal cellular signaling cascade following CORT + CPO exposure that represent these vulnerable populations.


Asunto(s)
Encéfalo/efectos de los fármacos , Cloropirifos/análogos & derivados , Corticosterona/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Plaguicidas/toxicidad , Animales , Encéfalo/metabolismo , Cloropirifos/toxicidad , Masculino , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos
4.
Heliyon ; 7(7): e07552, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34307952

RESUMEN

AIMS: Veterans from the 1990-91 Gulf War were exposed to acetylcholinesterase inhibitors (AChEIs), and, following service, an estimated one-third began suffering from a medically unexplained, multi-symptom illness termed Gulf War Illness (GWI). Previous research has developed validated rodent models that include exposure to exogenous corticosterone (CORT) and AChEIs to simulate high stress and chemical exposures encountered in theater. This combination of exposures in mice resulted in a marked increase in neuroinflammation, which is a common symptom of veterans suffering from GWI. To further elucidate the mechanisms associated with these mouse models of GWI, an investigation into intracellular responses in the cortex were performed to characterize the early cellular signaling changes associated with this exposure-initiated neuroinflammation. MAIN METHODS: Adult male C57BL/6J mice were exposed to CORT in the drinking water (200 µg/mL) for 7 days followed by a single intraperitoneal injection of diisopropyl fluorophosphate (DFP; 4.0 mg/kg) or chlorpyrifos oxon (CPO; 8.0 mg/kg), on day 8 and euthanized 0.5, 2, and 24 h post-injection. Eleven post-translationally modified protein targets were measured using a multiplexed ELISA. KEY FINDINGS: Phosphoprotein responses were found to be exposure specific following AChEI insult, with and without CORT. Specifically, CORT + CPO exposure was found to sequentially activate several phosphoproteins involved in mitogen activated protein kinase signaling (p-MEK1/2, p-ERK1/2, and p-JNK). DFP alone similarly increased proteins in this pathway (p-RPS6, and p-JNK), but the addition of CORT ameliorated these affects. SIGNIFICANCE: The results of this study provide insight into differentially activated pathways depending on AChEI in these GWI models.

5.
Regul Toxicol Pharmacol ; 122: 104892, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33592196

RESUMEN

In 2019, the California Office of Environmental Health Hazard Assessment initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of its genotoxicity. The objective of this analysis was to inform this review process with a weight-of-evidence assessment of more than 65 acetaminophen genetic toxicology studies that are of widely varying quality and conformance to accepted standards and relevance to humans. In these studies, acetaminophen showed no evidence of induction of point or gene mutations in bacterial and mammalian cell systems or in in vivo studies. In reliable, well-controlled test systems, clastogenic effects were only observed in unstable, p53-deficient cell systems or at toxic and/or excessively high concentrations that adversely affect cellular processes (e.g., mitochondrial respiration) and cause cytotoxicity. Across the studies, there was no clear evidence that acetaminophen causes DNA damage in the absence of toxicity. In well-controlled clinical studies, there was no meaningful evidence of chromosomal damage. Based on this weight-of-evidence assessment, acetaminophen overwhelmingly produces negative results (i.e., is not a genotoxic hazard) in reliable, robust high-weight studies. Its mode of action produces cytotoxic effects before it can induce the stable, genetic damage that would be indicative of a genotoxic or carcinogenic hazard.


Asunto(s)
Acetaminofén/análisis , Animales , Carcinogénesis , Ciclo Celular/efectos de los fármacos , Aberraciones Cromosómicas/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Humanos , Pruebas de Mutagenicidad , Mutágenos
6.
Methods Mol Biol ; 2102: 3-15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31989547

RESUMEN

Toxicology is a broad field that requires the translation of biochemical responses to xenobiotic exposures into useable information to ensure the safety of the public. Modern techniques are improving rapidly, both quantitatively and qualitatively, to provide the tools necessary to expand available toxicological datasets and refine our ability to translate that data into relevant information via bioinformatics. These new techniques can, and do, impact many of the current critical roles in toxicology, including the environmental, forensic, preclinical/clinical, and regulatory realms. One area of rapid expansion is our understanding of bioenergetics, or the study of the transformation of energy in living organisms, and new mathematical approaches are needed to interpret these large datasets. As bioenergetics are intimately involved in the regulation of how and when a cell responds to xenobiotics, monitoring these changes (i.e., metabolic fluctuations) in cells/tissues post-exposure provides an approach to define the temporal scale of pharmacodynamic responses, which can be used to guide additional toxicological techniques (e.g., "omics"). This chapter will summarize important in vitro assays and in vivo imaging techniques to take real-time measurements. Using this information, our laboratory has utilized bioenergetics to identify significant time points of pharmacodynamic relevance as well as forecast the cell's eventual fate.


Asunto(s)
Bioensayo/métodos , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Toxicología/métodos , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , 4-Cloro-7-nitrobenzofurazano/farmacología , Adenosina Trifosfato/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Desoxiglucosa/análogos & derivados , Desoxiglucosa/metabolismo , Desoxiglucosa/farmacología , Metabolismo Energético/efectos de los fármacos , Fluorodesoxiglucosa F18/metabolismo , Humanos , Técnicas In Vitro , Verde de Indocianina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , NAD/metabolismo , NADP/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Flujo de Trabajo , Xenobióticos
7.
Brain Behav Immun Health ; 4: 100068, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34589850

RESUMEN

Using salivary inflammatory markers as a noninvasive biomonitoring technique within natural social contexts has become increasingly important to link social and biological responses. Many studies have associated circulating cytokines to distinct aspects of physical activity and social/emotional behavior; however, they have not been linked to success and failure in a naturalistic setting for military personnel performing tasks. In this study, salivary cytokines were studied in a group of fifteen Air Force Reserve Officers' Training Corps (ROTC; 14 males, 1 female) subjects performing three mock hostage rescue missions, designed to prompt responses associated with baseline, success, and failure. Each subject completed the tasks of the mission individually and again in randomly assigned teams. Participants were outfitted via direct skin contact with comfortable external Zephyr™ sensors to monitor heart rate, breathing rate, and activity while completing each task. Saliva samples were collected before and after the completion of each mission, and cytokine levels were quantified using enzyme-labelled immunoassay (ELISA) beads. These biomarkers were used to describe the body's immune response to success and failure when performing a mock rescue mission individually and in a team. All measured cytokine levels increased following failed missions performed individually, compared to cytokine levels associated with successful missions. When completing the tasks as a team, there were no significant differences in cytokine response between success and failure; however, being in a team stimulated an increased pre-mission cytokine response, suggesting the concept of teamwork and performing with peers for the first time had a more significant impact than the notion of failing. Additionally, none of the cytokines tested for individual missions correlated to physical activity markers (heart rate, breathing rate, activity) measured during performance. These results indicate a potentially new noninvasive method of determining social stress levels under taxing conditions.

8.
J Neurochem ; 150(4): 420-440, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31222732

RESUMEN

Neurotoxicology is hampered by the inability to predict regional and cellular targets of toxicant-induced damage. Evaluating astrogliosis overcomes this problem because reactive astrocytes highlight the location of toxicant-induced damage. While enhanced expression of glial fibrillary acidic protein is a hallmark of astrogliosis, few other biomarkers have been identified. However, bacterial artificial chromosome - translating ribosome affinity purification (bacTRAP) technology allows for characterization of the actively translating transcriptome of a particular cell type; use of this technology in aldehyde dehydrogenase 1 family member L1 (ALDH1L1) bacTRAP mice can identify genes selectively expressed in astrocytes. The aim of this study was to characterize additional biomarkers of neurotoxicity-induced astrogliosis using ALDH1L1 bacTRAP mice. The known dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 12.5 mg/kg s.c.) was used to induce astrogliosis. Striatal tissue was obtained 12, 24, and 48 h following exposure for the isolation of actively translating RNA. Subsequently, MPTP-induced changes in this RNA pool were analyzed by microarray and 184 statistically significant, differentially expressed genes were identified. The dataset was interrogated by gene ontology, pathway, and co-expression network analyses, which identified novel genes, as well as those with known immune and inflammatory functions. Using these analyses, we were directed to several genes associated with reactive astrocytes. Of these, TIMP1 and miR-147 were identified as candidate biomarkers because of their robust increased expression following both MPTP and trimethyl tin exposures. Thus, we have demonstrated that bacTRAP can be used to identify new biomarkers of astrogliosis and aid in the characterization of astrocyte phenotypes induced by toxicant exposures. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14518.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/metabolismo , Astrocitos/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Gliosis/genética , Intoxicación por MPTP/genética , Retinal-Deshidrogenasa/metabolismo , Animales , Astrocitos/metabolismo , Biomarcadores/metabolismo , Cromosomas Artificiales Bacterianos , Gliosis/inducido químicamente , Intoxicación por MPTP/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
9.
Neurotoxicology ; 70: 26-32, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30339781

RESUMEN

Gulf War Illness (GWI) is a chronic multi-symptom disorder experienced by as many as a third of the veterans of the 1991 Gulf War; the constellation of "sickness behavior" symptoms observed in ill veterans is suggestive of a neuroimmune involvement. Various chemical exposures and conditions in theater have been implicated in the etiology of the illness. Previously, we found that GW-related organophosphates (OPs), such as the sarin surrogate, DFP, and chlorpyrifos, cause neuroinflammation. The combination of these exposures with exogenous corticosterone (CORT), mimicking high physiological stress, exacerbates the observed neuroinflammation. The potential relationship between the effects of OPs and CORT on the brain versus inflammation in the periphery has not been explored. Here, using our established GWI mouse model, we investigated the effects of CORT and DFP exposure, with or without a chronic application of pyridostigmine bromide (PB) and N,N-diethyl-meta-toluamide (DEET), on cytokines in the liver and serum. While CORT primed DFP-induced neuroinflammation, this effect was largely absent in the periphery. Moreover, the changes found in the peripheral tissues do not correlate with the previously reported neuroinflammation. These results not only support GWI as a neuroimmune disorder, but also highlight the separation between central and peripheral effects of these exposures.


Asunto(s)
Corticosterona/toxicidad , Citocinas/biosíntesis , DEET/toxicidad , Mediadores de Inflamación/sangre , Síndrome del Golfo Pérsico/sangre , Bromuro de Piridostigmina/toxicidad , Animales , Inhibidores de la Colinesterasa/administración & dosificación , Inhibidores de la Colinesterasa/toxicidad , Corticosterona/administración & dosificación , Citocinas/antagonistas & inhibidores , Citocinas/genética , DEET/administración & dosificación , Modelos Animales de Enfermedad , Expresión Génica , Inflamación/sangre , Inflamación/inducido químicamente , Mediadores de Inflamación/antagonistas & inhibidores , Repelentes de Insectos/administración & dosificación , Repelentes de Insectos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico/inducido químicamente , Bromuro de Piridostigmina/administración & dosificación
10.
Toxicol Sci ; 165(2): 302-313, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29846716

RESUMEN

Many veterans of the 1991 Persian Gulf War (GW) returned with a chronic multisymptom illness that has been termed Gulf War Illness (GWI). Previous GWI studies have suggested that exposure to acetylcholinesterase inhibitors (AChEIs) in theater, such as sarin and/or pesticides, may have contributed to the symptomatology of GWI. Additionally, concomitant high physiological stress experienced during the war may have contributed to the initiation of the GWI phenotype. Although inhibition of AChE leading to accumulation of acetylcholine (ACh) will activate the cholinergic anti-inflammatory pathway, the signature symptomatology of GWI has been shown to be associated with neuroinflammation. To investigate the relationship between ACh and neuroinflammation in discrete brain regions, we used our previously established mouse model of GWI, which combines an exposure to a high physiological stress mimic, corticosterone (CORT), with GW-relevant AChEIs. The AChEIs used in this study were diisopropyl fluorophosphate (DFP), chlorpyrifos oxon (CPO), and physostigmine (PHY). After AChEI exposure, ACh concentrations for cortex (CTX), hippocampus (HIP), and striatum (STR) were determined using hydrophilic interaction liquid chromatography with ultraperformance liquid chromatography-tandem-mass spectrometry (MS/MS). CORT pretreatment ameliorated the DFP-induced ACh increase in HIP and STR, but not CTX. CORT pretreatment did not significantly alter ACh levels for CPO and PHY. Further analysis of STR neuroinflammatory biomarkers revealed an exacerbated CORT + AChEI response, which does not correspond to measured brain ACh. By utilizing this new analytical method for discrete brain region analysis of ACh, this work suggests the exacerbated neuroinflammatory effects in our mouse model of GWI are not driven by the accumulation of brain region-specific ACh.


Asunto(s)
Acetilcolina/análisis , Encéfalo/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Síndrome del Golfo Pérsico/inmunología , Acetilcolina/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Cromatografía Líquida de Alta Presión , Corticosterona/farmacología , Inflamación , Masculino , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico/metabolismo , Fenotipo , Estrés Fisiológico/efectos de los fármacos , Espectrometría de Masas en Tándem
11.
J Neuroinflammation ; 15(1): 86, 2018 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-29549885

RESUMEN

BACKGROUND: Gulf War illness (GWI) is an archetypal, medically unexplained, chronic condition characterised by persistent sickness behaviour and neuroimmune and neuroinflammatory components. An estimated 25-32% of the over 900,000 veterans of the 1991 Gulf War fulfil the requirements of a GWI diagnosis. It has been hypothesised that the high physical and psychological stress of combat may have increased vulnerability to irreversible acetylcholinesterase (AChE) inhibitors leading to a priming of the neuroimmune system. A number of studies have linked high levels of psychophysiological stress and toxicant exposures to epigenetic modifications that regulate gene expression. Recent research in a mouse model of GWI has shown that pre-exposure with the stress hormone corticosterone (CORT) causes an increase in expression of specific chemokines and cytokines in response to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. METHODS: C57BL/6J mice were exposed to CORT for 4 days, and exposed to DFP on day 5, before sacrifice 6 h later. The transcriptome was examined using RNA-seq, and the epigenome was examined using reduced representation bisulfite sequencing and H3K27ac ChIP-seq. RESULTS: We show transcriptional, histone modification (H3K27ac) and DNA methylation changes in genes related to the immune and neuronal system, potentially relevant to neuroinflammatory and cognitive symptoms of GWI. Further evidence suggests altered proportions of myelinating oligodendrocytes in the frontal cortex, perhaps connected to white matter deficits seen in GWI sufferers. CONCLUSIONS: Our findings may reflect the early changes which occurred in GWI veterans, and we observe alterations in several pathways altered in GWI sufferers. These close links to changes seen in veterans with GWI indicates that this model reflects the environmental exposures related to GWI and may provide a model for biomarker development and testing future treatments.


Asunto(s)
Encéfalo/metabolismo , Citocinas/metabolismo , Epigénesis Genética/fisiología , Síndrome del Golfo Pérsico/tratamiento farmacológico , Síndrome del Golfo Pérsico/patología , Estrés Psicológico/metabolismo , Animales , Antiinflamatorios/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/patología , Inhibidores de la Colinesterasa/farmacología , Inmunoprecipitación de Cromatina , Corticosterona/toxicidad , Metilación de ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Hidrolasas de Triéster Fosfórico/farmacología , Factores de Tiempo
12.
PLoS One ; 13(1): e0190546, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29304053

RESUMEN

Systemic exposure to the inflammagen and bacterial endotoxin lipopolysaccharide (LPS) has been widely used to evaluate inflammation and sickness behavior. While many inflammatory conditions occur in the periphery, it is well established that peripheral inflammation can affect the brain. Neuroinflammation, the elaboration of proinflammatory mediators in the CNS, commonly is associated with behavioral symptoms (e.g., lethargy, anhedonia, anorexia, depression, etc.) termed sickness behavior. Stressors have been shown to interact with and alter neuroinflammatory responses and associated behaviors. Here, we examined the effects of the stress hormone, corticosterone (CORT), as a stressor mimic, on neuroinflammation induced with a single injection (2mg/kg, s.c.) or inhalation exposure (7.5 µg/m3) of LPS or polyinosinic:polycytidylic acid (PIC; 12mg/kg, i.p.) in adult male C57BL/6J mice. CORT was given in the drinking water (200 mg/L) for 1 week or every other week for 90 days followed by LPS. Proinflammatory cytokine expression (TNFα, IL-6, CCL2, IL-1ß, LIF, and OSM) was measured by qPCR. The activation of the neuroinflammation downstream signaling activator, STAT3, was assessed by immunoblot of pSTAT3Tyr705. The presence of astrogliosis was assessed by immunoassay of GFAP. Acute exposure to LPS caused brain-wide neuroinflammation without producing astrogliosis; exposure to CORT for 1 week caused marked exacerbation of the LPS-induced neuroinflammation. This neuroinflammatory "priming" by CORT was so pronounced that sub-neuroinflammatory exposures by inhalation instigated neuroinflammation when paired with prior CORT exposure. This effect also was extended to another common inflammagen, PIC (a viral mimic). Furthermore, a single week of CORT exposure maintained the potential for priming for 30 days, while intermittent exposure to CORT for up to 90 days synergistically primed the LPS-induced neuroinflammatory response. These findings highlight the possibility for an isolated inflammatory event to be exacerbated by a temporally distant stressful stimulus and demonstrates the potential for recurrent stress to greatly aggravate chronic inflammatory disorders.


Asunto(s)
Corticosterona/administración & dosificación , Inflamación/inducido químicamente , Lipopolisacáridos/administración & dosificación , Enfermedades del Sistema Nervioso/inducido químicamente , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Cytokine ; 106: 136-147, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29103821

RESUMEN

Investigations of cellular responses involved in injury and repair processes have generated valuable information contributing to the advancement of wound healing and treatments. Intra- and extracellular regulators of healing mechanisms, such as cytokines, signaling proteins, and growth factors, have been described to possess significant roles in facilitating optimal recovery. This study explored a collection of 30 spatiotemporal responses comprised of cytokines (IL-1α, IL-1ß, IL-2, IL-6, TNF-α, MIP-1α), intracellular proteins (Akt, c-Jun, CREB, ERK1/2, JNK, MEK1, p38, p53, p90RSK), phosphorylated proteins (p-Akt, p-c-Jun, p-CREB, p-ERK1/2, p-GSK-3α/ß, p-HSP27, p-IκBα, p-JNK, p-MEK1, p-p38, p-p70S6K, p-p90RSK, p-STAT2, p-STAT3), and a protease (Caspase-3), measured in skeletal muscle tissue following a traumatic injury (rodent Gustilo IIIB fracture). To optimize the analysis of context-specific data sets, a network centrality parameter approach was used to assess the impact of each response in relation to all other measured responses. This approach identified proteins that were substantially amplified and potentially central in the wound healing network by evaluation of their corresponding centrality parameter, radiality. Network analysis allowed us to distinguish the progression of healing that occurred at certain time points and regions of injury. Notably, new tissue formation was proposed to occur by 168 h post-injury in severely injured tissue, while tissue 1-cm away from the site of injury that experienced relatively minor injury appeared to exhibit signs of new tissue formation as early as 24 h post-injury. In particular, hallmarks of inflammation, cytokines IL-1ß, IL-6, and IL-2, appear to have a pronounced impact at earlier time points (0-24 h post-injury), while intracellular proteins involved in cell proliferation, differentiation, or proteolysis (c-Jun, CREB, JNK, p38, p-c-Jun; p-MEK1, p-p38, p-STAT3) are more significant at later times (24-168 h). Overall, this study demonstrates the feasibility of a network analysis approach to extract significant information and also offers a spatiotemporal visualization of the intra- and extracellular signaling responses that regulate healing mechanisms.


Asunto(s)
Citocinas/metabolismo , Espacio Extracelular/metabolismo , Espacio Intracelular/metabolismo , Transducción de Señal , Heridas y Lesiones/metabolismo , Animales , Caspasa 3/metabolismo , Fracturas del Fémur/metabolismo , Fracturas del Fémur/patología , Masculino , Músculos/metabolismo , Fosforilación , Ratas Sprague-Dawley , Factores de Tiempo , Heridas y Lesiones/patología
15.
J Neurochem ; 142(3): 444-455, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28500787

RESUMEN

Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting veterans of the 1991 Gulf War. Among the symptoms of GWI are those associated with sickness behavior, observations suggestive of underlying neuroinflammation. We have shown that exposure of mice to the stress hormone, corticosterone (CORT), and to diisopropyl fluorophosphate (DFP), as a nerve agent mimic, results in marked neuroinflammation, findings consistent with a stress/neuroimmune basis of GWI. Here, we examined the contribution of irreversible and reversible acetylcholinesterase (AChE) inhibitors to neuroinflammation in our mouse model of GWI. Male C57BL/6J mice received 4 days of CORT (400 mg/L) in the drinking water followed by a single dose of chlorpyrifos oxon (CPO; 8 mg/kg, i.p.), DFP (4 mg/kg, i.p.), pyridostigmine bromide (PB; 3 mg/kg, i.p.), or physostigmine (PHY; 0.5 mg/kg, i.p.). CPO and DFP alone caused cortical and hippocampal neuroinflammation assessed by qPCR of tumor necrosis factor-alpha, IL-6, C-C chemokine ligand 2, IL-1ß, leukemia inhibitory factor and oncostatin M; CORT pretreatment markedly augmented these effects. Additionally, CORT exposure prior to DFP or CPO enhanced activation of the neuroinflammation signal transducer, signal transducer and activator of transcription 3 (STAT3). In contrast, PHY or PB alone or with CORT pretreatment did not produce neuroinflammation or STAT3 activation. While all of the CNS-acting AChE inhibitors (DFP, CPO, and PHY) decreased brain AChE activity, CORT pretreatment abrogated these effects for the irreversible inhibitors. Taken together, these findings suggest that irreversible AChE inhibitor-induced neuroinflammation and particularly its exacerbation by CORT, result from non-cholinergic effects of these compounds, pointing potentially to organophosphorylation of other neuroimmune targets.


Asunto(s)
Acetilcolinesterasa/metabolismo , Encéfalo/efectos de los fármacos , Inhibidores de la Colinesterasa/toxicidad , Corticosterona/farmacología , Guerra del Golfo , Organofosfatos/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico/patología , Bromuro de Piridostigmina/farmacología
16.
Environ Monit Assess ; 189(4): 190, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28357716

RESUMEN

Thousands of gallons of industrial chemicals, crude 4-methylcyclohexanemethanol (MCHM) and propylene glycol phenyl ether (PPh), leaked from industrial tanks into the Elk River in Charleston, West Virginia, USA, on January 9, 2014. A considerable number of people were reported to exhibit symptoms of chemical exposure and an estimated 300,000 residents were advised not to use or drink tap water. At the time of the spill, the existing toxicological data of the chemicals were limited for a full evaluation of the health risks, resulting in concern among those in the impacted regions. In this preliminary study, we assessed cell viability and plasma membrane degradation following a 24-h exposure to varying concentrations (0-1000 µM) of the two compounds, alone and in combination. Evaluation of different cell lines, HEK-293 (kidney), HepG2 (liver), H9c2 (heart), and GT1-7 (brain), provided insight regarding altered cellular responses in varying organ systems. Single exposure to MCHM or PPh did not affect cell viability, except at doses much higher than the estimated exposure levels. Certain co-exposures significantly reduced metabolic activity and increased plasma membrane degradation in GT1-7, HepG2, and H9c2 cells. These findings highlight the importance of examining co-exposures to fully understand the potential toxic effects.


Asunto(s)
Ciclohexanos/toxicidad , Éteres Fenílicos/toxicidad , Glicoles de Propileno/toxicidad , Contaminantes Químicos del Agua/toxicidad , Línea Celular , Monitoreo del Ambiente , Células HEK293 , Humanos , Ríos/química , West Virginia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...