Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38936834

RESUMEN

R-loops cause genome instability, disrupting normal cellular functions. Histone acetylation, particularly by p300/CBP-associated factor (PCAF), is essential for maintaining genome stability and regulating cellular processes. Understanding how R-loop formation and resolution are regulated is important because dysregulation of these processes can lead to multiple diseases, including cancer. This study explores the role of PCAF in maintaining genome stability, specifically for R-loop resolution. We found that PCAF depletion promotes the generation of R-loop structures, especially during ongoing transcription, thereby compromising genome stability. Mechanistically, we found that PCAF facilitates histone H4K8 acetylation, leading to recruitment of the a double-strand break repair protein (MRE11) and exonuclease 1 (EXO1) to R-loop sites. These in turn recruit Fanconi anemia (FA) proteins, including FANCM and BLM, to resolve the R-loop structure. Our findings suggest that PCAF, histone acetylation, and FA proteins collaborate to resolve R-loops and ensure genome stability. This study therefore provides novel mechanistic insights into the dynamics of R-loops as well as the role of PCAF in preserving genome stability. These results may help develop therapeutic strategies to target diseases associated with genome instability.


R-loops are harmful DNA-RNA hybrid structures that cause genome instability, disrupting normal cell functions. This study explored the role of the protein PCAF in resolving R-loops to maintain genome stability. The researchers found that depleting PCAF leads to increased R-loop formation, especially during transcription, compromising the genome. Mechanistically, PCAF facilitates histone acetylation, recruiting proteins like MRE11, EXO1, FANCM and BLM to R-loop sites. These proteins collaborate to resolve R-loop structures. The findings suggest that PCAF, histone acetylation, and these repair proteins work together to untangle R-loops and preserve genome integrity. Understanding this process provides insights into R-loop dynamics and PCAF's role in genome maintenance, potentially leading to therapeutic strategies for diseases associated with genome instability, such as cancer.

2.
DNA Repair (Amst) ; 140: 103711, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38924925

RESUMEN

Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.

3.
Nat Genet ; 55(10): 1721-1734, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735199

RESUMEN

The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors. Biochemical experiments show APOBEC3B binding to R-loops in cells and in vitro. Genetic experiments demonstrate R-loop increases in cells lacking APOBEC3B and decreases in cells overexpressing APOBEC3B. Genome-wide analyses show major changes in the overall landscape of physiological and stimulus-induced R-loops with thousands of differentially altered regions, as well as binding of APOBEC3B to many of these sites. APOBEC3 mutagenesis impacts genes overexpressed in tumors and splice factor mutant tumors preferentially, and APOBEC3-attributed kataegis are enriched in RTCW motifs consistent with APOBEC3B deamination. Taken together with the fact that APOBEC3B binds single-stranded DNA and RNA and preferentially deaminates DNA, these results support a mechanism in which APOBEC3B regulates R-loops and contributes to R-loop mutagenesis in cancer.


Asunto(s)
Neoplasias , Estructuras R-Loop , Humanos , ADN de Cadena Simple/genética , Estudio de Asociación del Genoma Completo , Mutagénesis , Neoplasias/genética , Neoplasias/patología , Citidina Desaminasa/genética , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo
4.
Nucleic Acids Res ; 51(9): 4429-4450, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37070200

RESUMEN

The long interspersed element 1 (LINE-1 or L1) integration is affected by many cellular factors through various mechanisms. Some of these factors are required for L1 amplification, while others either suppress or enhance specific steps during L1 propagation. Previously, TRIM28 has been identified to suppress transposable elements, including L1 expression via its canonical role in chromatin remodeling. Here, we report that TRIM28 through its B box domain increases L1 retrotransposition and facilitates shorter cDNA and L1 insert generation in cultured cells. Consistent with the latter, we observe that tumor specific L1 inserts are shorter in endometrial, ovarian, and prostate tumors with higher TRIM28 mRNA expression than in those with lower TRIM28 expression. We determine that three amino acids in the B box domain that are involved in TRIM28 multimerization are critical for its effect on both L1 retrotransposition and cDNA synthesis. We provide evidence that B boxes from the other two members in the Class VI TRIM proteins, TRIM24 and TRIM33, also increase L1 retrotransposition. Our findings could lead to a better understanding of the host/L1 evolutionary arms race in the germline and their interplay during tumorigenesis.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Proteína 28 que Contiene Motivos Tripartito , ADN Complementario/genética , Elementos de Nucleótido Esparcido Largo/genética , Humanos , Proteína 28 que Contiene Motivos Tripartito/genética
5.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983041

RESUMEN

Genetic mutations or environmental agents are major contributors to leukemia and are associated with genomic instability. R-loops are three-stranded nucleic acid structures consisting of an RNA-DNA hybrid and a non-template single-stranded DNA. These structures regulate various cellular processes, including transcription, replication, and DSB repair. However, unregulated R-loop formation can cause DNA damage and genomic instability, which are potential drivers of cancer including leukemia. In this review, we discuss the current understanding of aberrant R-loop formation and how it influences genomic instability and leukemia development. We also consider the possibility of R-loops as therapeutic targets for cancer treatment.


Asunto(s)
Leucemia , Estructuras R-Loop , Humanos , Transcripción Genética , Reparación del ADN , ARN/genética , Replicación del ADN , Leucemia/genética , Inestabilidad Genómica
6.
Semin Cell Dev Biol ; 135: 59-72, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35331626

RESUMEN

Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.


Asunto(s)
Cromatina , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Genoma , Procesamiento Proteico-Postraduccional/genética , ADN/genética
7.
Methods Mol Biol ; 2589: 345-360, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36255636

RESUMEN

Genome integrity is constantly challenged by various processes including DNA damage, structured DNA, transcription, and DNA-protein crosslinks. During DNA replication, active replication forks that encounter these obstacles can result in their stalling and collapse. Accurate DNA replication requires the ability of forks to navigate these threats, which is aided by DNA repair proteins. Histone acetylation participates in this process through an ability to signal and recruit proteins to regions of replicating DNA. For example, the histone acetyltransferase PCAF promotes the recruitment of the DNA repair factors MRE11 and EXO1 to stalled forks by acetylating histone H4 at lysine 8 (H4K8ac). These highly dynamic processes can be detected and analyzed using a modified proximity ligation assay (PLA) method, known as SIRF (in situ protein interactions with nascent DNA replication forks). This single-cell assay combines PLA with EdU-coupled Click-iT chemistry reactions and fluorescence microscopy to detect these interactions at sites of replicating DNA. Here we provide a detailed protocol utilizing SIRF that detects the HAT PCAF and histone acetylation at replication forks. This technique provides a robust methodology to determine protein recruitment and modifications at the replication fork with single-cell resolution.


Asunto(s)
Replicación del ADN , Histonas , Acetilación , Histonas/metabolismo , Lisina/metabolismo , Análisis de la Célula Individual , ADN/metabolismo
8.
Life Sci Space Res (Amst) ; 35: 105-112, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36336356

RESUMEN

Future lunar missions and beyond will require new and innovative approaches to radiation countermeasures. The Translational Research Institute for Space Health (TRISH) is focused on identifying and supporting unique approaches to reduce risks to human health and performance on future missions beyond low Earth orbit. This paper will describe three funded and complementary avenues for reducing the risk to humans from radiation exposure experienced in deep space. The first focus is on identifying new therapeutic targets to reduce the damaging effects of radiation by focusing on high throughput genetic screens in accessible, sometimes called lower, organism models. The second focus is to design innovative approaches for countermeasure development with special attention to nucleotide-based methodologies that may constitute a more agile way to design therapeutics. The final focus is to develop new and innovative ways to test radiation countermeasures in a human model system. While animal studies continue to be beneficial in the study of space radiation, they can have imperfect translation to humans. The use of three-dimensional (3D) complex in vitro models is a promising approach to aid the development of new countermeasures and personalized assessments of radiation risks. These three distinct and unique approaches complement traditional space radiation efforts and should provide future space explorers with more options to safeguard their short and long-term health.


Asunto(s)
Radiación Cósmica , Exposición a la Radiación , Protección Radiológica , Vuelo Espacial , Animales , Humanos , Radiación Cósmica/efectos adversos , Protección Radiológica/métodos , Luna
9.
Mol Cell ; 82(21): 4001-4017.e7, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36265488

RESUMEN

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in subsets of aggressive cancer. Recent studies have revealed that telomere repeat-containing RNA (TERRA) promotes ALT-associated HDR (ALT-HDR). Here, we report that RAD51AP1, a crucial ALT factor, interacts with TERRA and utilizes it to generate D- and R-loop HR intermediates. We also show that RAD51AP1 binds to and might stabilize TERRA-containing R-loops as RAD51AP1 depletion reduces R-loop formation at telomere DNA breaks. Proteomic analyses uncover a role for RAD51AP1-mediated TERRA R-loop homeostasis in a mechanism of chromatin-directed suppression of TERRA and prevention of transcription-replication collisions (TRCs) during ALT-HDR. Intriguingly, we find that both TERRA binding and this non-canonical function of RAD51AP1 require its intrinsic SUMO-SIM regulatory axis. These findings provide insights into the multi-contextual functions of RAD51AP1 within the ALT mechanism and regulation of TERRA.


Asunto(s)
ARN Largo no Codificante , Homeostasis del Telómero , Cromatina/genética , Proteómica , Telómero/genética , Telómero/metabolismo , ARN Largo no Codificante/genética , Homeostasis
10.
Bioessays ; 44(7): e2200015, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35532219

RESUMEN

The lysine demethylase KDM5A collaborates with PARP1 and the histone variant macroH2A1.2 to modulate chromatin to promote DNA repair. Indeed, KDM5A engages poly(ADP-ribose) (PAR) chains at damage sites through a previously uncharacterized coiled-coil domain, a novel binding mode for PAR interactions. While KDM5A is a well-known transcriptional regulator, its function in DNA repair is only now emerging. Here we review the molecular mechanisms that regulate this PARP1-macroH2A1.2-KDM5A axis in DNA damage and consider the potential involvement of this pathway in transcription regulation and cancer. Using KDM5A as an example, we discuss how multifunctional chromatin proteins transition between several DNA-based processes, which must be coordinated to protect the integrity of the genome and epigenome. The dysregulation of chromatin and loss of genome integrity that is prevalent in human diseases including cancer may be related and could provide opportunities to target multitasking proteins with these pathways as therapeutic strategies.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas , Cromatina/genética , Daño del ADN/genética , Reparación del ADN/genética , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo
11.
Nucleic Acids Res ; 50(7): 3922-3943, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35253893

RESUMEN

An inability to repair DNA double-strand breaks (DSBs) threatens genome integrity and can contribute to human diseases, including cancer. Mammalian cells repair DSBs mainly through homologous recombination (HR) and nonhomologous end-joining (NHEJ). The choice between these pathways is regulated by the interplay between 53BP1 and BRCA1, whereby BRCA1 excludes 53BP1 to promote HR and 53BP1 limits BRCA1 to facilitate NHEJ. Here, we identify the zinc-finger proteins (ZnF), ZMYM2 and ZMYM3, as antagonizers of 53BP1 recruitment that facilitate HR protein recruitment and function at DNA breaks. Mechanistically, we show that ZMYM2 recruitment to DSBs and suppression of break-associated 53BP1 requires the SUMO E3 ligase PIAS4, as well as SUMO binding by ZMYM2. Cells deficient for ZMYM2/3 display genome instability, PARP inhibitor and ionizing radiation sensitivity and reduced HR repair. Importantly, depletion of 53BP1 in ZMYM2/3-deficient cells rescues BRCA1 recruitment to and HR repair of DSBs, suggesting that ZMYM2 and ZMYM3 primarily function to restrict 53BP1 engagement at breaks to favor BRCA1 loading that functions to channel breaks to HR repair. Identification of DNA repair functions for these poorly characterized ZnF proteins may shed light on their unknown contributions to human diseases, where they have been reported to be highly dysregulated, including in several cancers.


Asunto(s)
Proteína BRCA1 , Reparación del ADN , Recombinación Homóloga , Factores de Transcripción , Proteína 1 de Unión al Supresor Tumoral P53 , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
12.
Front Genet ; 12: 747734, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659365

RESUMEN

DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.

13.
Exp Mol Med ; 53(9): 1268-1277, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34548613

RESUMEN

Endogenous DNA damage is a major contributor to mutations, which are drivers of cancer development. Bromodomain (BRD) proteins are well-established participants in chromatin-based DNA damage response (DDR) pathways, which maintain genome integrity from cell-intrinsic and extrinsic DNA-damaging sources. BRD proteins are most well-studied as regulators of transcription, but emerging evidence has revealed their importance in other DNA-templated processes, including DNA repair and replication. How BRD proteins mechanistically protect cells from endogenous DNA damage through their participation in these pathways remains an active area of investigation. Here, we review several recent studies establishing BRD proteins as key influencers of endogenous DNA damage, including DNA-RNA hybrid (R-loops) formation during transcription and participation in replication stress responses. As endogenous DNA damage is known to contribute to several human diseases, including neurodegeneration, immunodeficiencies, cancer, and aging, the ability of BRD proteins to suppress DNA damage and mutations is likely to provide new insights into the involvement of BRD proteins in these diseases. Although many studies have focused on BRD proteins in transcription, evidence indicates that BRD proteins have emergent functions in DNA repair and genome stability and are participants in the etiology and treatment of diseases involving endogenous DNA damage.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Proteínas Nucleares/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/química , Humanos , Proteínas Nucleares/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/metabolismo
14.
Nat Commun ; 12(1): 2490, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941775

RESUMEN

DNA methylation and trimethylated histone H4 Lysine 20 (H4K20me3) constitute two important heterochromatin-enriched marks that frequently cooperate in silencing repetitive elements of the mammalian genome. However, it remains elusive how these two chromatin modifications crosstalk. Here, we report that DNA methyltransferase 1 (DNMT1) specifically 'recognizes' H4K20me3 via its first bromo-adjacent-homology domain (DNMT1BAH1). Engagement of DNMT1BAH1-H4K20me3 ensures heterochromatin targeting of DNMT1 and DNA methylation at LINE-1 retrotransposons, and cooperates with the previously reported readout of histone H3 tail modifications (i.e., H3K9me3 and H3 ubiquitylation) by the RFTS domain to allosterically regulate DNMT1's activity. Interplay between RFTS and BAH1 domains of DNMT1 profoundly impacts DNA methylation at both global and focal levels and genomic resistance to radiation-induced damage. Together, our study establishes a direct link between H4K20me3 and DNA methylation, providing a mechanism in which multivalent recognition of repressive histone modifications by DNMT1 ensures appropriate DNA methylation patterning and genomic stability.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Animales , Línea Celular , Cristalografía por Rayos X , Genoma/genética , Inestabilidad Genómica/genética , Heterocromatina/genética , Ratones
15.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34003252

RESUMEN

The histone demethylase KDM5A erases histone H3 lysine 4 methylation, which is involved in transcription and DNA damage responses (DDRs). While DDR functions of KDM5A have been identified, how KDM5A recognizes DNA lesion sites within chromatin is unknown. Here, we identify two factors that act upstream of KDM5A to promote its association with DNA damage sites. We have identified a noncanonical poly(ADP-ribose) (PAR)-binding region unique to KDM5A. Loss of the PAR-binding region or treatment with PAR polymerase (PARP) inhibitors (PARPi's) blocks KDM5A-PAR interactions and DNA repair functions of KDM5A. The histone variant macroH2A1.2 is also specifically required for KDM5A recruitment and function at DNA damage sites, including homology-directed repair of DNA double-strand breaks and repression of transcription at DNA breaks. Overall, this work reveals the importance of PAR binding and macroH2A1.2 in KDM5A recognition of DNA lesion sites that drive transcriptional and repair activities at DNA breaks within chromatin that are essential for maintaining genome integrity.


Asunto(s)
ADN/genética , Histonas/genética , Reparación del ADN por Recombinación/genética , Proteína 2 de Unión a Retinoblastoma/genética , Cromatina/genética , Roturas del ADN de Doble Cadena , Daño del ADN , Humanos , Poli Adenosina Difosfato Ribosa/genética , Poli(ADP-Ribosa) Polimerasas/genética
16.
Brief Funct Genomics ; 20(2): 106-112, 2021 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-33279952

RESUMEN

Post-translational modifications of proteins are well-established participants in DNA damage response (DDR) pathways, which function in the maintenance of genome integrity. Emerging evidence is starting to reveal the involvement of modifications on RNA in the DDR. RNA modifications are known regulators of gene expression but how and if they participate in DNA repair and genome maintenance has been poorly understood. Here, we review several studies that have now established RNA modifications as key components of DNA damage responses. RNA modifying enzymes and the binding proteins that recognize these modifications localize to and participate in the repair of UV-induced and DNA double-strand break lesions. RNA modifications have a profound effect on DNA-RNA hybrids (R-loops) at DNA damage sites, a structure known to be involved in DNA repair and genome stability. Given the importance of the DDR in suppressing mutations and human diseases such as neurodegeneration, immunodeficiencies, cancer and aging, RNA modification pathways may be involved in human diseases not solely through their roles in gene expression but also by their ability to impact DNA repair and genome stability.


Asunto(s)
Reparación del ADN , Genoma , Daño del ADN , Reparación del ADN/genética , Inestabilidad Genómica , Humanos , ARN/genética
17.
Mol Cell ; 80(2): 327-344.e8, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32966758

RESUMEN

Stabilization of stalled replication forks is a prominent mechanism of PARP (Poly(ADP-ribose) Polymerase) inhibitor (PARPi) resistance in BRCA-deficient tumors. Epigenetic mechanisms of replication fork stability are emerging but remain poorly understood. Here, we report the histone acetyltransferase PCAF (p300/CBP-associated) as a fork-associated protein that promotes fork degradation in BRCA-deficient cells by acetylating H4K8 at stalled replication forks, which recruits MRE11 and EXO1. A H4K8ac binding domain within MRE11/EXO1 is required for their recruitment to stalled forks. Low PCAF levels, which we identify in a subset of BRCA2-deficient tumors, stabilize stalled forks, resulting in PARPi resistance in BRCA-deficient cells. Furthermore, PCAF activity is tightly regulated by ATR (ataxia telangiectasia and Rad3-related), which phosphorylates PCAF on serine 264 (S264) to limit its association and activity at stalled forks. Our results reveal PCAF and histone acetylation as critical regulators of fork stability and PARPi responses in BRCA-deficient cells, which provides key insights into targeting BRCA-deficient tumors and identifying epigenetic modulators of chemotherapeutic responses.


Asunto(s)
Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , Exodesoxirribonucleasas/metabolismo , Histonas/metabolismo , Proteína Homóloga de MRE11/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Replicación del ADN/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lisina/metabolismo , Modelos Biológicos , Mutación/genética , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Unión Proteica/efectos de los fármacos , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/genética
18.
Essays Biochem ; 64(5): 687-703, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32808652

RESUMEN

Cells encounter a multitude of external and internal stress-causing agents that can ultimately lead to DNA damage, mutations and disease. A cascade of signaling events counters these challenges to DNA, which is termed as the DNA damage response (DDR). The DDR preserves genome integrity by engaging appropriate repair pathways, while also coordinating cell cycle and/or apoptotic responses. Although many of the protein components in the DDR are identified, how chemical modifications to DNA impact the DDR is poorly understood. This review focuses on our current understanding of DNA methylation in maintaining genome integrity in mammalian cells. DNA methylation is a reversible epigenetic mark, which has been implicated in DNA damage signaling, repair and replication. Sites of DNA methylation can trigger mutations, which are drivers of human diseases including cancer. Indeed, alterations in DNA methylation are associated with increased susceptibility to tumorigenesis but whether this occurs through effects on the DDR, transcriptional responses or both is not entirely clear. Here, we also highlight epigenetic drugs currently in use as therapeutics that target DNA methylation pathways and discuss their effects in the context of the DDR. Finally, we pose unanswered questions regarding the interplay between DNA methylation, transcription and the DDR, positing the potential coordinated efforts of these pathways in genome integrity. While the impact of DNA methylation on gene regulation is widely understood, how this modification contributes to genome instability and mutations, either directly or indirectly, and the potential therapeutic opportunities in targeting DNA methylation pathways in cancer remain active areas of investigation.


Asunto(s)
Metilación de ADN , Genoma , Animales , Humanos
19.
Proc Natl Acad Sci U S A ; 117(31): 18439-18447, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32675241

RESUMEN

In mammals, repressive histone modifications such as trimethylation of histone H3 Lys9 (H3K9me3), frequently coexist with DNA methylation, producing a more stable and silenced chromatin state. However, it remains elusive how these epigenetic modifications crosstalk. Here, through structural and biochemical characterizations, we identified the replication foci targeting sequence (RFTS) domain of maintenance DNA methyltransferase DNMT1, a module known to bind the ubiquitylated H3 (H3Ub), as a specific reader for H3K9me3/H3Ub, with the recognition mode distinct from the typical trimethyl-lysine reader. Disruption of the interaction between RFTS and the H3K9me3Ub affects the localization of DNMT1 in stem cells and profoundly impairs the global DNA methylation and genomic stability. Together, this study reveals a previously unappreciated pathway through which H3K9me3 directly reinforces DNMT1-mediated maintenance DNA methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Heterocromatina/metabolismo , Histonas/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Heterocromatina/genética , Histonas/química , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Metilación , Procesamiento Proteico-Postraduccional
20.
Genes Dev ; 33(23-24): 1751-1774, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31753913

RESUMEN

Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or genome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and repair of DSBs by homologous recombination. We also discovered the bromo-and-extra-terminal (BET) BRD proteins, BRD2 and BRD4, as negative regulators of transcription-associated RNA-DNA hybrids (R-loops) as inhibition of BRD2 or BRD4 increased R-loop formation, which generated DSBs. These breaks were reliant on topoisomerase II, and BRD2 directly bound and activated topoisomerase I, a known restrainer of R-loops. Thus, comprehensive interactome and functional profiling of BRD proteins revealed new homologous recombination and genome stability pathways, providing a framework to understand genome maintenance by BRD proteins and the effects of their pharmacological inhibition.


Asunto(s)
Inestabilidad Genómica , Estructuras R-Loop , Reparación del ADN por Recombinación/genética , Factores de Transcripción/genética , Acetilación , Línea Celular , Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Células HEK293 , Células HeLa , Humanos , Transactivadores/metabolismo , Factores de Transcripción/análisis , Ubiquitinación , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...