Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Behav Res Ther ; 183: 104637, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39306938

RESUMEN

OBJECTIVE: Develop and evaluate a treatment matching algorithm to predict differential treatment response to Mindfulness-Based Cognitive Therapy for suicide prevention (MBCT-S) versus enhanced treatment-as-usual (eTAU). METHODS: Analyses used data from Veterans at high-risk for suicide assigned to either MBCT-S (n = 71) or eTAU (n = 69) in a randomized clinical trial. Potential predictors (n = 55) included available demographic, clinical, and neurocognitive variables. Random forest models were used to predict risk of suicidal event (suicidal behaviors, or ideation resulting in hospitalization or emergency department visit) within 12 months following randomization, characterize the prediction, and develop a Personalized Advantage Index (PAI). RESULTS: A slightly better prediction model emerged for MBCT-S (AUC = 0.70) than eTAU (AUC = 0.63). Important outcome predictors for participants in the MBCT-S arm included PTSD diagnosis, decisional efficiency on a neurocognitive task (Go/No-Go), prior-year mental health residential treatment, and non-suicidal self-injury. Significant predictors for participants in the eTAU arm included past-year acute psychiatric hospitalizations, past-year outpatient psychotherapy visits, past-year suicidal ideation severity, and attentional control (indexed by Stroop task). A moderation analysis showed that fewer suicidal events occurred among those randomized to their PAI-indicated optimal treatment. CONCLUSIONS: PAI-guided treatment assignment may enhance suicide prevention outcomes. However, prior to real-world application, additional research is required to improve model accuracy and evaluate model generalization.

2.
Nat Biotechnol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090305

RESUMEN

Therapeutic small interfering RNA (siRNA) requires sugar and backbone modifications to inhibit nuclease degradation. However, metabolic stabilization by phosphorothioate (PS), the only backbone chemistry used clinically, may be insufficient for targeting extrahepatic tissues. To improve oligonucleotide stabilization, we report the discovery, synthesis and characterization of extended nucleic acid (exNA) consisting of a methylene insertion between the 5'-C and 5'-OH of a nucleoside. exNA incorporation is compatible with common oligonucleotide synthetic protocols and the PS backbone, provides stabilization against 3' and 5' exonucleases and is tolerated at multiple oligonucleotide positions. A combined exNA-PS backbone enhances resistance to 3' exonuclease by ~32-fold over the conventional PS backbone and by >1,000-fold over the natural phosphodiester backbone, improving tissue exposure, tissue accumulation and efficacy in mice, both systemically and in the brain. The improved efficacy and durability imparted by exNA may enable therapeutic interventions in extrahepatic tissues, both with siRNA and with other oligonucleotides such as CRISPR guide RNA, antisense oligonucleotides, mRNA and tRNA.

3.
Nucleic Acid Ther ; 34(4): 164-172, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39023561

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the first exon of the huntingtin gene (HTT). Oligonucleotide therapeutics, such as short interfering RNA (siRNA), reduce levels of huntingtin mRNA and protein in vivo and are considered a viable therapeutic strategy. However, the extent to which they silence huntingtin mRNA in the nucleus is not established. We synthesized siRNA cross-reactive to mouse (wild-type) Htt and human (mutant) HTT in a divalent scaffold and delivered to two mouse models of HD. In both models, divalent siRNA sustained lowering of wild-type Htt, but not mutant HTT mRNA expression in striatum and cortex. Near-complete silencing of both mutant HTT protein and wild-type HTT protein was observed in both models. Subsequent fluorescent in situ hybridization analysis shows that divalent siRNA acts predominantly on cytoplasmic mutant HTT transcripts, leaving clustered mutant HTT transcripts in the nucleus largely intact in treated HD mouse brains. The observed differences between mRNA and protein levels, exaggerated in the case of extended repeats, might apply to other repeat-associated neurological disorders.


Asunto(s)
Núcleo Celular , Proteína Huntingtina , Enfermedad de Huntington , ARN Mensajero , ARN Interferente Pequeño , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/antagonistas & inhibidores , Animales , Ratones , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Enfermedad de Huntington/patología , Enfermedad de Huntington/metabolismo , ARN Interferente Pequeño/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Modelos Animales de Enfermedad , Mutación , Silenciador del Gen
4.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895198

RESUMEN

Oligonucleotide therapeutics (ASOs and siRNAs) have been explored for modulation of gene expression in the central nervous system (CNS), with several drugs approved and many in clinical evaluation. Administration of highly concentrated oligonucleotides to the CNS can induce acute neurotoxicity. We demonstrate that delivery of concentrated oligonucleotides to the CSF in awake mice induces acute toxicity, observable within seconds of injection. Electroencephalography (EEG) and electromyography (EMG) in awake mice demonstrated seizures. Using ion chromatography, we show that siRNAs can tightly bind Ca2+ and Mg2+ up to molar equivalents of the phosphodiester (PO)/phosphorothioate (PS) bonds independently of the structure or phosphorothioate content. Optimization of the formulation by adding high concentrations (above biological levels) of divalent cations (Ca2+ alone, Mg2+ alone, or Ca2+ and Mg2+) prevents seizures with no impact on the distribution or efficacy of the oligonucleotide. The data here establishes the importance of adding Ca2+ and Mg2+ to the formulation for the safety of CNS administration of therapeutic oligonucleotides.

5.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38774633

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the first exon of the huntingtin gene (HTT). Oligonucleotide therapeutics, such as short interfering RNA (siRNA), reduce levels of huntingtin mRNA and protein in vivo and are considered a viable therapeutic strategy. However, the extent to which they silence HTT mRNA in the nucleus is not established. We synthesized siRNA cross-reactive to mouse (wild-type) Htt and human (mutant) HTT in a di-valent scaffold and delivered to two mouse models of HD. In both models, di-valent siRNA sustained lowering of wild-type Htt, but not mutant HTT mRNA expression in striatum and cortex. Near-complete silencing of both mutant HTT protein and wild-type Htt protein was observed in both models. Subsequent fluorescent in situ hybridization (FISH) analysis shows that di-valent siRNA acts predominantly on cytoplasmic mutant HTT transcripts, leaving clustered mutant HTT transcripts in the nucleus largely intact in treated HD mouse brains. The observed differences between mRNA and protein levels, exaggerated in the case of extended repeats, might apply to other repeat-associated neurological disorders.

6.
Nat Commun ; 15(1): 2634, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528030

RESUMEN

Real-time lab analysis is needed to support clinical decision making and research on human missions to the Moon and Mars. Powerful laboratory instruments, such as flow cytometers, are generally too cumbersome for spaceflight. Here, we show that scant test samples can be measured in microgravity, by a trained astronaut, using a miniature cytometry-based analyzer, the rHEALTH ONE, modified specifically for spaceflight. The base device addresses critical spaceflight requirements including minimal resource utilization and alignment-free optics for surviving rocket launch. To fully enable reduced gravity operation onboard the space station, we incorporated bubble-free fluidics, electromagnetic shielding, and gravity-independent sample introduction. We show microvolume flow cytometry from 10 µL sample drops, with data from five simultaneous channels using 10 µs bin intervals during each sample run, yielding an average of 72 million raw data points in approximately 2 min. We demonstrate the device measures each test sample repeatably, including correct identification of a sample that degraded in transit to the International Space Station. This approach can be utilized to further our understanding of spaceflight biology and provide immediate, actionable diagnostic information for management of astronaut health without the need for Earth-dependent analysis.


Asunto(s)
Vuelo Espacial , Ingravidez , Humanos , Citometría de Flujo , Luna
7.
J Neurosci ; 44(14)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38388424

RESUMEN

A missense mutation in the transcription repressor Nucleus accumbens-associated 1 (NACC1) gene at c.892C>T (p.Arg298Trp) on chromosome 19 causes severe neurodevelopmental delay ( Schoch et al., 2017). To model this disorder, we engineered the first mouse model with the homologous mutation (Nacc1+/R284W ) and examined mice from E17.5 to 8 months. Both genders had delayed weight gain, epileptiform discharges and altered power spectral distribution in cortical electroencephalogram, behavioral seizures, and marked hindlimb clasping; females displayed thigmotaxis in an open field. In the cortex, NACC1 long isoform, which harbors the mutation, increased from 3 to 6 months, whereas the short isoform, which is not present in humans and lacks aaR284 in mice, rose steadily from postnatal day (P) 7. Nuclear NACC1 immunoreactivity increased in cortical pyramidal neurons and parvalbumin containing interneurons but not in nuclei of astrocytes or oligodendroglia. Glial fibrillary acidic protein staining in astrocytic processes was diminished. RNA-seq of P14 mutant mice cortex revealed over 1,000 differentially expressed genes (DEGs). Glial transcripts were downregulated and synaptic genes upregulated. Top gene ontology terms from upregulated DEGs relate to postsynapse and ion channel function, while downregulated DEGs enriched for terms relating to metabolic function, mitochondria, and ribosomes. Levels of synaptic proteins were changed, but number and length of synaptic contacts were unaltered at 3 months. Homozygosity worsened some phenotypes including postnatal survival, weight gain delay, and increase in nuclear NACC1. This mouse model simulates a rare form of autism and will be indispensable for assessing pathophysiology and targets for therapeutic intervention.


Asunto(s)
Trastorno Autístico , Factores de Transcripción , Animales , Femenino , Humanos , Masculino , Ratones , Mutación/genética , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Aumento de Peso
8.
PLoS One ; 18(12): e0289197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055711

RESUMEN

Self-control underlies goal-directed behaviour in humans and other animals. Delayed gratification - a measure of self-control - requires the ability to tolerate delays and/or invest more effort to obtain a reward of higher value over one of lower value, such as food or mates. Social context, in particular, the presence of competitors, may influence delayed gratification. We adapted the 'rotating-tray' paradigm, where subjects need to forgo an immediate, lower-quality (i.e. less preferred) reward for a delayed, higher-quality (i.e. more preferred) one, to test social influences on delayed gratification in two corvid species: New Caledonian crows and Eurasian jays. We compared choices for immediate vs. delayed rewards while alone, in the presence of a competitive conspecific and in the presence of a non-competitive conspecific. We predicted that, given the increased risk of losing a reward with a competitor present, both species would similarly, flexibly alter their choices in the presence of a conspecific compared to when alone. We found that species differed: jays were more likely to select the immediate, less preferred reward than the crows. We also found that jays were more likely to select the immediate, less preferred reward when a competitor or non-competitor was present than when alone, or when a competitor was present compared to a non-competitor, while the crows selected the delayed, highly preferred reward irrespective of social presence. We discuss our findings in relation to species differences in socio-ecological factors related to adult sociality and food-caching (storing). New Caledonian crows are more socially tolerant and moderate cachers, while Eurasian jays are highly territorial and intense cachers that may have evolved under the social context of cache pilfering and cache protection strategies. Therefore, flexibility (or inflexibility) in delay of gratification under different social contexts may relate to the species' social tolerance and related risk of competition.


Asunto(s)
Cuervos , Descuento por Demora , Passeriformes , Pájaros Cantores , Animales , Adulto , Humanos , Conducta Alimentaria , Recompensa
9.
Mol Ther Methods Clin Dev ; 31: 101122, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37920238

RESUMEN

Oligonucleotide therapeutics offer great promise in the treatment of previously untreatable neurodegenerative disorders; however, there are some challenges to overcome in pre-clinical studies. (1) They carry a well-established dose-related acute neurotoxicity at the time of administration. (2) Repeated administration into the cerebrospinal fluid may be required for long-term therapeutic effect. Modifying oligonucleotide formulation has been postulated to prevent acute toxicity, but a sensitive and quantitative way to track seizure activity in pre-clinical studies is lacking. The use of intracerebroventricular (i.c.v.) catheters offers a solution for repeated dosing; however, fixation techniques in large animal models are not standardized and are not reliable. Here we describe a novel surgical technique in a sheep model for i.c.v. delivery of neurotherapeutics based on the fixation of the i.c.v. catheter with a 3D-printed anchorage system composed of plastic and ceramic parts, compatible with magnetic resonance imaging, computed tomography, and electroencephalography (EEG). Our technique allowed tracking electrical brain activity in awake animals via EEG and video recording during and for the 24-h period after administration of a novel oligonucleotide in sheep. Its anchoring efficiency was demonstrated for at least 2 months and will be tested for up to a year in ongoing studies.

10.
Res Sq ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398145

RESUMEN

Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extended nucleic acid (exNA). Upon exNA precursor scale up, exNA incorporation is fully compatible with common nucleic acid synthetic protocols. The novel backbone is orthogonal to PS and shows profound stabilization against 3'- and 5'-exonucleases. Using small interfering RNAs (siRNAs) as an example, we show exNA is tolerated at most nucleotide positions and profoundly improves in vivo efficacy. A combined exNA-PS backbone enhances siRNA resistance to serum 3'-exonuclease by ~ 32-fold over PS backbone and > 1000-fold over the natural phosphodiester backbone, thereby enhancing tissue exposure (~ 6-fold), tissues accumulation (4- to 20-fold), and potency both systemically and in brain. The improved potency and durability imparted by exNA opens more tissues and indications to oligonucleotide-driven therapeutic interventions.

11.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292886

RESUMEN

Metabolic stabilization of therapeutic oligonucleotides requires both sugar and backbone modifications, where phosphorothioate (PS) is the only backbone chemistry used in the clinic. Here, we describe the discovery, synthesis, and characterization of a novel biologically compatible backbone, extended nucleic acid (exNA). Upon exNA precursor scale up, exNA incorporation is fully compatible with common nucleic acid synthetic protocols. The novel backbone is orthogonal to PS and shows profound stabilization against 3'- and 5'-exonucleases. Using small interfering RNAs (siRNAs) as an example, we show exNA is tolerated at most nucleotide positions and profoundly improves in vivo efficacy. A combined exNA-PS backbone enhances siRNA resistance to serum 3'-exonuclease by ~32-fold over PS backbone and >1000-fold over the natural phosphodiester backbone, thereby enhancing tissue exposure (~6-fold), tissues accumulation (4- to 20-fold), and potency both systemically and in brain. The improved potency and durability imparted by exNA opens more tissues and indications to oligonucleotide-driven therapeutic interventions.

12.
Behav Brain Sci ; 46: e61, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154351

RESUMEN

The fearful ape hypothesis proposes that heightened fearfulness in humans is adaptive. However, despite its attractive anthropocentric narrative, the evidence presented for greater fearfulness in humans versus other apes is not sufficient to support this claim. Conceptualization, context, and comparison are strongly lacking in Grossmann's proposal, but are key to understanding variation in the fear response among individuals and species.


Asunto(s)
Formación de Concepto , Miedo , Humanos , Miedo/fisiología
13.
Curr Biol ; 33(9): 1803-1808.e2, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37019106

RESUMEN

Being able to anticipate another's actions is a crucial ability for social animals because it allows for coordinated reactions. However, little is known regarding how hand morphology and biomechanical ability influences such predictions. Sleight of hand magic capitalizes on the observer's expectations of specific manual movements,1,2 making it an optimal model to investigate the intersection between the ability to manually produce an action and the ability to predict the actions of others. The French drop effect involves mimicking a hand-to-hand object transfer by pantomiming a partially occluded precision grip. Therefore, to be misled by it, the observer ought to infer the opposing movement of the magician's thumb.3 Here, we report how three species of platyrrhine with inherently distinct biomechanical ability4,5,6-common marmosets (Callithrix jacchus), Humboldt's squirrel monkeys (Saimiri cassiquiarensis), and yellow-breasted capuchins (Sapajus xanthosternos)-experienced this effect. Additionally, we included an adapted version of the trick using a grip that all primates can perform (power grip), thus removing the opposing thumb as the causal agent of the effect. When observing the French drop, only the species with full or partial opposable thumbs were misled by it, just like humans. Conversely, the adapted version of the trick misled all three monkey species, regardless of their manual anatomy. The results provide evidence of a strong interaction between the physical ability to approximate a manual movement and the predictions primates make when observing the actions of others, highlighting the importance of physical factors in shaping the perception of actions.


Asunto(s)
Hominidae , Platirrinos , Animales , Humanos , Motivación , Mano
14.
Cognition ; 236: 105433, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37001438

RESUMEN

The ability to shift from current to future perspective is pivotal to future-oriented cognition. With two distinct cultural groups, UK (N = 92) and China (N = 90), we investigated 3 to 5-year-olds' understanding of preference changes occurring within themselves and their peers (another child). We administered a battery of representative tasks of executive function and theory of mind to examine their underlying relationships with children's ability to predict future preferences. British 3-year-olds outperformed Chinese children in predicting future preferences, while no country differences were observed between the 4- and 5-year-olds. Across the UK and China, children were more accurate when predicting for their peers than for themselves. They were also more accurate when their current preferences were identified first, i.e. before answering questions about the future. Chinese children outperformed their British counterparts on inhibition and cognitive flexibility tasks whereas there were no Eastern and Western differences in their theory of mind abilities. After controlling for age and children's knowledge of generic adult preferences, children's performance in the inhibition and cognitive flexibility tasks were significantly correlated with the prediction of their own future preferences, but they were not significantly correlated when predicting for a peer. These results are discussed in relation to the conflicts between multiple perspectives and the cognitive correlates of future-oriented cognition.


Asunto(s)
Cognición , Pueblos del Este de Asia , Niño , Preescolar , Humanos , Desarrollo Infantil/fisiología , Función Ejecutiva/fisiología , Predicción
15.
J Geriatr Psychiatry Neurol ; 36(2): 143-154, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35603772

RESUMEN

Introduction: Parkinson's disease (PD) is characterized by high-rates of depression with limited evidence-based treatment options to improve mood. Objective: To expand therapeutic options, we evaluated the feasibility and effect of a telehealth mindfulness-based cognitive therapy intervention adapted for PD (MBCT-PD) in a sample of participants with DSM-5 depressive disorders. Methods: Fifteen participants with PD and clinically-significant depression completed 9 sessions of MBCT-PD. Depression, anxiety, and quality of life were evaluated at baseline, endpoint, and 1-month follow-up. Results: Telehealth MBCT-PD was feasible and beneficial. Completion rates exceeded 85% and treatment satisfaction rates were high. Notable improvements were observed for depression, anxiety, and quality of life over the course of the trial. Conclusion: Telehealth MBCT-PD shows promise and warrants further evaluation via randomized clinical trial with more diverse participants. Such research holds the potential to expand the range of therapeutic options for depression in PD, thereby setting the stage for personalized care.


Asunto(s)
Terapia Cognitivo-Conductual , Atención Plena , Enfermedad de Parkinson , Telemedicina , Humanos , Proyectos Piloto , Depresión/terapia , Depresión/psicología , Calidad de Vida/psicología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Resultado del Tratamiento
16.
Brain Commun ; 4(6): fcac248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36458209

RESUMEN

Mutant messenger RNA (mRNA) and protein contribute to the clinical manifestation of many repeat-associated neurological disorders, with the presence of nuclear RNA clusters being a common pathological feature. Yet, investigations into Huntington's disease-caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene-have primarily focused on toxic protein gain-of-function as the primary disease-causing feature. To date, mutant HTT mRNA has not been identified as an in vivo hallmark of Huntington's disease. Here, we report that, in two Huntington's disease mouse models (YAC128 and BACHD-97Q-ΔN17), mutant HTT mRNA is retained in the nucleus. Widespread formation of large mRNA clusters (∼0.6-5 µm3) occurred in 50-75% of striatal and cortical neurons. Cluster formation was independent of age and driven by expanded repeats. Clusters associate with chromosomal transcriptional sites and quantitatively co-localize with the aberrantly processed N-terminal exon 1-intron 1 mRNA isoform, HTT1a. HTT1a mRNA clusters are observed in a subset of neurons from human Huntington's disease post-mortem brain and are likely caused by somatic expansion of repeats. In YAC128 mice, clusters, but not individual HTT mRNA, are resistant to antisense oligonucleotide treatment. Our findings identify mutant HTT/HTT1a mRNA clustering as an early, robust molecular signature of Huntington's disease, providing in vivo evidence that Huntington's disease is a repeat expansion disease with mRNA involvement.

17.
Nat Commun ; 13(1): 5802, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192390

RESUMEN

Small interfering RNAs are a new class of drugs, exhibiting sequence-driven, potent, and sustained silencing of gene expression in vivo. We recently demonstrated that siRNA chemical architectures can be optimized to provide efficient delivery to the CNS, enabling development of CNS-targeted therapeutics. Many genetically-defined neurodegenerative disorders are dominant, favoring selective silencing of the mutant allele. In some cases, successfully targeting the mutant allele requires targeting single nucleotide polymorphism (SNP) heterozygosities. Here, we use Huntington's disease (HD) as a model. The optimized compound exhibits selective silencing of mutant huntingtin protein in patient-derived cells and throughout the HD mouse brain, demonstrating SNP-based allele-specific RNAi silencing of gene expression in vivo in the CNS. Targeting a disease-causing allele using RNAi-based therapies could be helpful in a range of dominant CNS disorders where maintaining wild-type expression is essential.


Asunto(s)
Enfermedad de Huntington , Alelos , Animales , Ingeniería Química , Silenciador del Gen , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/terapia , Ratones , Proteínas del Tejido Nervioso/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
18.
BMJ Open ; 12(10): e062729, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36270763

RESUMEN

OBJECTIVES: Comprehensive geriatric assessment (CGA) is a complex intervention applied to older people with evidence of benefit in medical populations. The aim of this systematic review was to describe how CGA is applied to surgical populations in randomised controlled trials. This will provide a basis for design of future studies focused on optimising CGA as a complex intervention. SETTING: A systematic review of randomised controlled trials. PARTICIPANTS: A systematic search was performed for studies of CGA in the perioperative period across Ovid MEDLINE, Ovid EMBASE, CINAHL and Cochrane CENTRAL, from inception to March 2021. INTERVENTIONS: Any randomised controlled trials of perioperative CGA versus 'standard care' were included. OUTCOME MEASURES: Qualitative description of CGA. RESULTS: 12 121 titles and abstracts were screened, 68 full-text articles were assessed for eligibility and 22 articles included, reporting on 13 trials. 10 trials focused on inpatients with hip fracture, with 7 of these delivering CGA on a geriatric medicine ward, 3 on a surgical ward. The remaining three trials were in elective general surgery all delivering CGA on a surgical ward. CGA components, duration of intervention and personnel delivering the intervention were highly variable across the different studies. Trials favoured postoperative delivery of CGA (11/13). Only four trials reported data on adherence to the CGA intervention. CONCLUSIONS: CGA as an intervention is variably described and delivered in randomised controlled trials in the perioperative setting. The reporting of both the intervention and standard care is often poor with little focus on adherence. Future research should focus on clearly defining and standardising the intervention as well as measuring adherence within trials. PROSPERO REGISTRATION NUMBER: CRD42020221797.


Asunto(s)
Geriatría , Fracturas de Cadera , Humanos , Anciano , Evaluación Geriátrica , Fracturas de Cadera/cirugía , Atención Perioperativa , Procedimientos Quirúrgicos Electivos
19.
R Soc Open Sci ; 9(7): 211781, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35875473

RESUMEN

Behavioural flexibility can impact on adaptability and survival, particularly in today's changing world, and encompasses associated components like neophobia, e.g. responses to novelty, and innovation, e.g. problem-solving. Bali myna (Leucopsar rothschildi) are a Critically Endangered endemic species, which are a focus of active conservation efforts, including reintroductions. Gathering behavioural data can aid in improving and developing conservation strategies, like pre-release training and individual selection for release. In 22 captive Bali myna, we tested neophobia (novel object, novel food, control conditions), innovation (bark, cup, lid conditions) and individual repeatability of latency responses in both experiments. We found effects of condition and presence of heterospecifics, including longer latencies to touch familiar food in presence than absence of novel items, and between problem-solving tasks, as well as in the presence of non-competing heterospecifics than competing heterospecifics. Age influenced neophobia, with adults showing longer latencies than juveniles. Individuals were repeatable in latency responses: (1) temporally in both experiments; (2) contextually within the innovation experiment and between experiments, as well as being consistent in approach order across experiments, suggesting stable behaviour traits. These findings are an important starting point for developing conservation behaviour related strategies in Bali myna and other similarly threatened species.

20.
BMJ Open ; 12(4): e056003, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487755

RESUMEN

OBJECTIVE: Outcome selection and reporting in studies of novel surgical procedures and devices lacks standardisation, hindering safe and effective evaluation. A core outcome set (COS) to measure and report in all studies of surgical innovation is needed. We explored outcomes in a specific sample of innovative surgical device case studies to identify outcome domains specifically relevant to innovation to inform the development of a COS. DESIGN: A targeted review of 11 purposive selected case studies of innovative surgical devices. METHODS: Electronic database searches in PubMed (July 2018) identified publications reporting the introduction and evaluation of each device. Outcomes were extracted and categorised into domains until no new domains were conceptualised. Outcomes specifically relevant to evaluating innovation were further scrutinised. RESULTS: 112 relevant publications were identified, and 5926 outcomes extracted. Heterogeneity in study type, outcome selection and reporting was observed across surgical devices. Categorisation of outcomes was performed for 2689 (45.4%) outcomes into five broad outcome domains. Outcomes considered key to the evaluation of innovation (n=66; 2.5%) were further categorised as surgeon/operator experience (n=40; 1.5%), unanticipated events (n=15, 0.6%) and modifications (n=11; 0.4%). CONCLUSION: Outcome domains unique to evaluating innovative surgical devices have been identified. Findings have been combined with multiple other data sources relevant to the evaluation of surgical innovation to inform the development of a COS to measure and report in all studies evaluating novel surgical procedures/devices.


Asunto(s)
Evaluación de Resultado en la Atención de Salud , Proyectos de Investigación , Bases de Datos Factuales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...