Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 378(6615): 56-61, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36108048

RESUMEN

Deep learning generative approaches provide an opportunity to broadly explore protein structure space beyond the sequences and structures of natural proteins. Here, we use deep network hallucination to generate a wide range of symmetric protein homo-oligomers given only a specification of the number of protomers and the protomer length. Crystal structures of seven designs are very similar to the computational models (median root mean square deviation: 0.6 angstroms), as are three cryo-electron microscopy structures of giant 10-nanometer rings with up to 1550 residues and C33 symmetry; all differ considerably from previously solved structures. Our results highlight the rich diversity of new protein structures that can be generated using deep learning and pave the way for the design of increasingly complex components for nanomachines and biomaterials.


Asunto(s)
Aprendizaje Profundo , Ingeniería de Proteínas , Materiales Biocompatibles/química , Microscopía por Crioelectrón , Modelos Moleculares , Conformación Proteica , Ingeniería de Proteínas/métodos , Subunidades de Proteína/química
2.
Science ; 378(6615): 49-56, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36108050

RESUMEN

Although deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.4% compared with 32.9% for Rosetta. The amino acid sequence at different positions can be coupled between single or multiple chains, enabling application to a wide range of current protein design challenges. We demonstrate the broad utility and high accuracy of ProteinMPNN using x-ray crystallography, cryo-electron microscopy, and functional studies by rescuing previously failed designs, which were made using Rosetta or AlphaFold, of protein monomers, cyclic homo-oligomers, tetrahedral nanoparticles, and target-binding proteins.


Asunto(s)
Aprendizaje Profundo , Ingeniería de Proteínas , Proteínas , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Conformación Proteica , Ingeniería de Proteínas/métodos , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...