Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645260

RESUMEN

Ergothioneine (EGT) is a diet-derived, atypical amino acid that accumulates to high levels in human tissues. Reduced EGT levels have been linked to age-related disorders, including neurodegenerative and cardiovascular diseases, while EGT supplementation is protective in a broad range of disease and aging models in mice. Despite these promising data, the direct and physiologically relevant molecular target of EGT has remained elusive. Here we use a systematic approach to identify how mitochondria remodel their metabolome in response to exercise training. From this data, we find that EGT accumulates in muscle mitochondria upon exercise training. Proteome-wide thermal stability studies identify 3-mercaptopyruvate sulfurtransferase (MPST) as a direct molecular target of EGT; EGT binds to and activates MPST, thereby boosting mitochondrial respiration and exercise training performance in mice. Together, these data identify the first physiologically relevant EGT target and establish the EGT-MPST axis as a molecular mechanism for regulating mitochondrial function and exercise performance.

2.
Cell ; 187(10): 2359-2374.e18, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653240

RESUMEN

Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Aminoácidos de Cadena Ramificada , Resistencia a la Insulina , Mitocondrias , Nitrógeno , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Ratones , Nitrógeno/metabolismo , Mitocondrias/metabolismo , Masculino , Humanos , Metabolismo Energético , Ratones Endogámicos C57BL , Estrés Oxidativo , Insulina/metabolismo , Dieta Alta en Grasa , Adipocitos Marrones/metabolismo , Transducción de Señal
3.
Redox Biol ; 72: 103123, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615489

RESUMEN

Redox signaling, a mode of signal transduction that involves the transfer of electrons from a nucleophilic to electrophilic molecule, has emerged as an essential regulator of inflammatory macrophages. Redox reactions are driven by reactive oxygen/nitrogen species (ROS and RNS) and redox-sensitive metabolites such as fumarate and itaconate, which can post-translationally modify specific cysteine residues in target proteins. In the past decade our understanding of how ROS, RNS, and redox-sensitive metabolites control macrophage function has expanded dramatically. In this review, we discuss the latest evidence of how ROS, RNS, and metabolites regulate macrophage function and how this is dysregulated with disease. We highlight the key tools to assess redox signaling and important questions that remain.


Asunto(s)
Macrófagos , Oxidación-Reducción , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Transducción de Señal , Succinatos , Macrófagos/metabolismo , Humanos , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales
4.
Nat Metab ; 6(3): 567-577, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38378996

RESUMEN

Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole-body energy expenditure, counteracts obesity and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs). We show that succinate transport is strongly dependent on the proportion that is present in the monocarboxylate form. MCTs facilitate monocarboxylate succinate uptake, which is promoted by alkalinization of the cytosol driven by adrenoreceptor stimulation. In brown adipocytes, we show that MCT1 primarily facilitates succinate import. In male mice, we show that both acute pharmacological inhibition of MCT1 and congenital depletion of MCT1 decrease succinate uptake into BAT and consequent catabolism. In sum, we define a mechanism of succinate uptake in BAT that underlies its protective activity in mouse models of metabolic disease.


Asunto(s)
Adipocitos Marrones , Ácido Succínico , Masculino , Ratones , Animales , Adipocitos Marrones/metabolismo , Ácido Succínico/metabolismo , Tejido Adiposo Pardo/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo
5.
bioRxiv ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36909624

RESUMEN

Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole body energy expenditure, counteracts obesity, and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs). We show that succinate transport is strongly dependent on the proportion of it present in the monocarboxylate form. MCTs facilitate monocarboxylate succinate uptake, which is promoted by alkalinization of the cytosol driven by adrenoreceptor stimulation. In brown adipocytes, we show that MCT1 primarily facilitates succinate import, however other members of the MCT family can partially compensate and fulfill this role in the absence of MCT1. In mice, we show that acute pharmacological inhibition of MCT1 and 2 decreases succinate uptake into BAT. Conversely, congenital genetic depletion of MCT1 alone has little effect on BAT succinate uptake, indicative of additional transport mechanisms with high capacity in vivo . In sum, we define a mechanism of succinate uptake in BAT that underlies its protective activity in mouse models of metabolic disease.

6.
Nature ; 616(7958): 790-797, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36921622

RESUMEN

Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular , Ciclo Celular , Ácido Láctico , Humanos , Anafase , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ácido Láctico/metabolismo , Mitosis
7.
Nat Chem Biol ; 19(7): 815-824, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36823351

RESUMEN

Creatine kinases (CKs) provide local ATP production in periods of elevated energetic demand, such as during rapid anabolism and growth. Thus, creatine energetics has emerged as a major metabolic liability in many rapidly proliferating cancers. Whether CKs can be targeted therapeutically is unknown because no potent or selective CK inhibitors have been developed. Here we leverage an active site cysteine present in all CK isoforms to develop a selective covalent inhibitor of creatine phosphagen energetics, CKi. Using deep chemoproteomics, we discover that CKi selectively engages the active site cysteine of CKs in cells. A co-crystal structure of CKi with creatine kinase B indicates active site inhibition that prevents bidirectional phosphotransfer. In cells, CKi and its analogs rapidly and selectively deplete creatine phosphate, and drive toxicity selectively in CK-dependent acute myeloid leukemia. Finally, we use CKi to uncover an essential role for CKs in the regulation of proinflammatory cytokine production in macrophages.


Asunto(s)
Creatina Quinasa , Creatina , Creatina Quinasa/química , Creatina Quinasa/metabolismo , Creatina/farmacología , Cisteína , Fosfotransferasas , Isoformas de Proteínas
8.
Cell ; 185(24): 4654-4673.e28, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36334589

RESUMEN

Brown adipose tissue (BAT) regulates metabolic physiology. However, nearly all mechanistic studies of BAT protein function occur in a single inbred mouse strain, which has limited the understanding of generalizable mechanisms of BAT regulation over physiology. Here, we perform deep quantitative proteomics of BAT across a cohort of 163 genetically defined diversity outbred mice, a model that parallels the genetic and phenotypic variation found in humans. We leverage this diversity to define the functional architecture of the outbred BAT proteome, comprising 10,479 proteins. We assign co-operative functions to 2,578 proteins, enabling systematic discovery of regulators of BAT. We also identify 638 proteins that correlate with protection from, or sensitivity to, at least one parameter of metabolic disease. We use these findings to uncover SFXN5, LETMD1, and ATP1A2 as modulators of BAT thermogenesis or adiposity, and provide OPABAT as a resource for understanding the conserved mechanisms of BAT regulation over metabolic physiology.


Asunto(s)
Tejido Adiposo Pardo , Proteoma , Humanos , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Proteoma/metabolismo , Termogénesis/fisiología , Adiposidad , Obesidad/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/metabolismo
9.
Nat Metab ; 4(8): 961-962, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35931883
10.
J Exp Med ; 219(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35103755

RESUMEN

Obesity is one of the leading preventable causes of cancer; however, little is known about the effects of obesity on anti-tumor immunity. Here, we investigated the effects of obesity on CD8 T cells in mouse models and patients with endometrial cancer. Our findings revealed that CD8 T cell infiltration is suppressed in obesity, which was associated with a decrease in chemokine production. Tumor-resident CD8 T cells were also functionally suppressed in obese mice, which was associated with a suppression of amino acid metabolism. Similarly, we found that a high BMI negatively correlated with CD8 infiltration in human endometrial cancer and that weight loss was associated with a complete pathological response in six of nine patients. Moreover, immunotherapy using anti-PD-1 led to tumor rejection in lean and obese mice and partially restored CD8 metabolism and anti-tumor immunity. These findings highlight the suppressive effects of obesity on CD8 T cell anti-tumor immunity, which can partially be reversed by weight loss and/or immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/etiología , Neoplasias/metabolismo , Obesidad/metabolismo , Microambiente Tumoral/inmunología , Aminoácidos/metabolismo , Animales , Linfocitos T CD8-positivos/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Inmunoterapia , Recuento de Linfocitos , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Ratones Obesos , Neoplasias/patología , Neoplasias/terapia , Obesidad/etiología
12.
J Biol Chem ; 298(2): 101501, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929172

RESUMEN

Activated macrophages undergo metabolic reprogramming, which not only supports their energetic demands but also allows for the production of specific metabolites that function as signaling molecules. Several Krebs cycles, or Krebs-cycle-derived metabolites, including succinate, α-ketoglutarate, and itaconate, have recently been shown to modulate macrophage function. The accumulation of 2-hydroxyglutarate (2HG) has also been well documented in transformed cells and more recently shown to play a role in T cell and dendritic cell function. Here we have found that the abundance of both enantiomers of 2HG is increased in LPS-activated macrophages. We show that L-2HG, but not D-2HG, can promote the expression of the proinflammatory cytokine IL-1ß and the adoption of an inflammatory, highly glycolytic metabolic state. These changes are likely mediated through activation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) by L-2HG, a known inhibitor of the HIF prolyl hydroxylases. Expression of the enzyme responsible for L-2HG degradation, L-2HG dehydrogenase (L-2HGDH), was also found to be decreased in LPS-stimulated macrophages and may therefore also contribute to L-2HG accumulation. Finally, overexpression of L-2HGDH in HEK293 TLR4/MD2/CD14 cells inhibited HIF-1α activation by LPS, while knockdown of L-2HGDH in macrophages boosted the induction of HIF-1α-dependent genes, as well as increasing LPS-induced HIF-1α activity. Taken together, this study therefore identifies L-2HG as a metabolite that can regulate HIF-1α in macrophages.


Asunto(s)
Glutaratos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Lipopolisacáridos , Macrófagos , Glutaratos/metabolismo , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/metabolismo
13.
Cell Metab ; 34(1): 140-157.e8, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34861155

RESUMEN

Uncoupling protein 1 (UCP1) is a major regulator of brown and beige adipocyte energy expenditure and metabolic homeostasis. However, the widely employed UCP1 loss-of-function model has recently been shown to have a severe deficiency in the entire electron transport chain of thermogenic fat. As such, the role of UCP1 in metabolic regulation in vivo remains unclear. We recently identified cysteine-253 as a regulatory site on UCP1 that elevates protein activity upon covalent modification. Here, we examine the physiological importance of this site through the generation of a UCP1 cysteine-253-null (UCP1 C253A) mouse, a precise genetic model for selective disruption of UCP1 in vivo. UCP1 C253A mice exhibit significantly compromised thermogenic responses in both males and females but display no measurable effect on fat accumulation in an obesogenic environment. Unexpectedly, we find that a lack of C253 results in adipose tissue redox stress, which drives substantial immune cell infiltration and systemic inflammatory pathology in adipose tissues and liver of male, but not female, mice. Elevation of systemic estrogen reverses this male-specific pathology, providing a basis for protection from inflammation due to loss of UCP1 C253 in females. Together, our results establish the UCP1 C253 activation site as a regulator of acute thermogenesis and sex-dependent tissue inflammation.


Asunto(s)
Tejido Adiposo Pardo , Cisteína , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Cisteína/metabolismo , Metabolismo Energético , Femenino , Inflamación/metabolismo , Masculino , Ratones , Termogénesis/fisiología , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
14.
Commun Biol ; 4(1): 711, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112929

RESUMEN

Age and sex are major risk factors in Alzheimer's disease (AD) with a higher incidence of the disease in females. Neuroinflammation, which is a hallmark of AD, contributes to disease pathogenesis and is inexorably linked with inappropriate microglial activation and neurodegeneration. We investigated sex-related differences in microglia in APP/PS1 mice and in post-mortem tissue from AD patients. Changes in genes that are indicative of microglial activation were preferentially increased in cells from female APP/PS1 mice and cells from males and females were morphological, metabolically and functionally distinct. Microglia from female APP/PS1 mice were glycolytic and less phagocytic and associated with increased amyloidosis whereas microglia from males were amoeboid and this was also the case in post-mortem tissue from male AD patients, where plaque load was reduced. We propose that the sex-related differences in microglia are likely to explain, at least in part, the sexual dimorphism in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Femenino , Regulación de la Expresión Génica , Glucólisis , Humanos , Masculino , Ratones , Ratones Transgénicos , Microglía/patología , Factores Sexuales
15.
Nat Metab ; 3(5): 604-617, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34002097

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), the most prevalent liver pathology worldwide, is intimately linked with obesity and type 2 diabetes. Liver inflammation is a hallmark of NAFLD and is thought to contribute to tissue fibrosis and disease pathogenesis. Uncoupling protein 1 (UCP1) is exclusively expressed in brown and beige adipocytes, and has been extensively studied for its capacity to elevate thermogenesis and reverse obesity. Here we identify an endocrine pathway regulated by UCP1 that antagonizes liver inflammation and pathology, independent of effects on obesity. We show that, without UCP1, brown and beige fat exhibit a diminished capacity to clear succinate from the circulation. Moreover, UCP1KO mice exhibit elevated extracellular succinate in liver tissue that drives inflammation through ligation of its cognate receptor succinate receptor 1 (SUCNR1) in liver-resident stellate cell and macrophage populations. Conversely, increasing brown and beige adipocyte content in mice antagonizes SUCNR1-dependent inflammatory signalling in the liver. We show that this UCP1-succinate-SUCNR1 axis is necessary to regulate liver immune cell infiltration and pathology, and systemic glucose intolerance in an obesogenic environment. As such, the therapeutic use of brown and beige adipocytes and UCP1 extends beyond thermogenesis and may be leveraged to antagonize NAFLD and SUCNR1-dependent liver inflammation.


Asunto(s)
Susceptibilidad a Enfermedades , Hepatitis/etiología , Hepatitis/metabolismo , Ácido Succínico/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Espacio Extracelular/metabolismo , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Hepatitis/patología , Humanos , Redes y Vías Metabólicas , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteína Desacopladora 1/metabolismo
16.
Nat Cell Biol ; 23(3): 216-218, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33723427
17.
Cell ; 183(1): 62-75.e17, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946811

RESUMEN

In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise.


Asunto(s)
Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Animales , Humanos , Concentración de Iones de Hidrógeno , Inflamación/metabolismo , Ratones , Mitocondrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Contracción Muscular , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal , Succinatos/metabolismo , Simportadores/metabolismo
18.
Cell ; 180(5): 968-983.e24, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109415

RESUMEN

Mammalian tissues engage in specialized physiology that is regulated through reversible modification of protein cysteine residues by reactive oxygen species (ROS). ROS regulate a myriad of biological processes, but the protein targets of ROS modification that drive tissue-specific physiology in vivo are largely unknown. Here, we develop Oximouse, a comprehensive and quantitative mapping of the mouse cysteine redox proteome in vivo. We use Oximouse to establish several paradigms of physiological redox signaling. We define and validate cysteine redox networks within each tissue that are tissue selective and underlie tissue-specific biology. We describe a common mechanism for encoding cysteine redox sensitivity by electrostatic gating. Moreover, we comprehensively identify redox-modified disease networks that remodel in aged mice, establishing a systemic molecular basis for the long-standing proposed links between redox dysregulation and tissue aging. We provide the Oximouse compendium as a framework for understanding mechanisms of redox regulation in physiology and aging.


Asunto(s)
Envejecimiento/genética , Cisteína/genética , Proteínas/genética , Proteoma/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Cisteína/metabolismo , Humanos , Ratones , Especificidad de Órganos/genética , Oxidación-Reducción , Estrés Oxidativo/genética , Proteómica/métodos , Especies Reactivas de Oxígeno , Transducción de Señal/genética
19.
Nat Metab ; 1: 16-33, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-31032474

RESUMEN

Metabolic reprogramming has become a key focus for both immunologists and cancer biologists, with exciting advances providing new insights into underlying mechanisms of disease. Metabolites traditionally associated with bioenergetics or biosynthesis have been implicated in immunity and malignancy in transformed cells, with a particular focus on intermediates of the mitochondrial pathway known as the Krebs cycle. Among these, the intermediates succinate, fumarate, itaconate, 2-hydroxyglutarate isomers (D-2-hydroxyglutarate and L-2-hydroxyglutarate) and acetyl-CoA now have extensive evidence for "non-metabolic" signalling functions in both physiological immune contexts and in disease contexts, such as the initiation of carcinogenesis. This review will describe how metabolic reprogramming, with emphasis placed on these metabolites, leads to altered immune cell and transformed cell function. The latest findings are informative for new therapeutic approaches which could be transformative for a range of diseases.


Asunto(s)
Ciclo del Ácido Cítrico , Inmunidad Innata , Neoplasias/metabolismo , Transducción de Señal , Humanos , Macrófagos/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinatos/metabolismo , Ácido Succínico/metabolismo
20.
Nature ; 560(7716): 102-106, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022159

RESUMEN

Thermogenesis by brown and beige adipose tissue, which requires activation by external stimuli, can counter metabolic disease1. Thermogenic respiration is initiated by adipocyte lipolysis through cyclic AMP-protein kinase A signalling; this pathway has been subject to longstanding clinical investigation2-4. Here we apply a comparative metabolomics approach and identify an independent metabolic pathway that controls acute activation of adipose tissue thermogenesis in vivo. We show that substantial and selective accumulation of the tricarboxylic acid cycle intermediate succinate is a metabolic signature of adipose tissue thermogenesis upon activation by exposure to cold. Succinate accumulation occurs independently of adrenergic signalling, and is sufficient to elevate thermogenic respiration in brown adipocytes. Selective accumulation of succinate may be driven by a capacity of brown adipocytes to sequester elevated circulating succinate. Furthermore, brown adipose tissue thermogenesis can be initiated by systemic administration of succinate in mice. Succinate from the extracellular milieu is rapidly metabolized by brown adipocytes, and its oxidation by succinate dehydrogenase is required for activation of thermogenesis. We identify a mechanism whereby succinate dehydrogenase-mediated oxidation of succinate initiates production of reactive oxygen species, and drives thermogenic respiration, whereas inhibition of succinate dehydrogenase supresses thermogenesis. Finally, we show that pharmacological elevation of circulating succinate drives UCP1-dependent thermogenesis by brown adipose tissue in vivo, which stimulates robust protection against diet-induced obesity and improves glucose tolerance. These findings reveal an unexpected mechanism for control of thermogenesis, using succinate as a systemically-derived thermogenic molecule.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Ácido Succínico/metabolismo , Termogénesis/fisiología , Adipocitos/efectos de los fármacos , Adipocitos/enzimología , Adipocitos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/enzimología , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/enzimología , Tejido Adiposo Blanco/metabolismo , Animales , Femenino , Masculino , Metabolómica , Ratones , Obesidad/metabolismo , Obesidad/prevención & control , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , Ácido Succínico/farmacología , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA