Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Differentiation ; : 100801, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39048474

RESUMEN

Fibroblast growth factor 7 (FGF7), also known as keratinocyte growth factor (KGF), is an important member of the FGF family that is mainly expressed by cells of mesenchymal origin while affecting specifically epithelial cells. Thus, FGF7 is widely expressed in diverse tissues, especially in urinary system, gastrointestinal tract (GI-tract), respiratory system, skin, and reproductive system. By interacting specifically with FGFR2-IIIb, FGF7 activates several downstream signal pathways, including Ras, PI3K-Akt, and PLCs. Previous studies of FGF7 mutants also have implicated its roles in various biological processes including development of essential organs and tissue homeostasis in adults. Moreover, more publications have reported that FGF7 and/or FGF7/FGFR2-IIIb-associated signaling pathway are involved in the progression of various heritable or acquired human diseases: heritable conditions like autosomal dominant polycystic kidney disease (ADPKD) and non-syndromic cleft lip and palate (NS CLP), where it promotes cyst formation and affects craniofacial development, respectively; acquired non-malignant diseases such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), mucositis, osteoarticular disorders, and metabolic diseases, where it influences inflammation, repair, and metabolic control; and tumorigenesis and malignant diseases, including benign prostatic hyperplasia (BPH), prostate cancer, gastric cancer, and ovarian cancer, where it enhances cell proliferation, invasion, and chemotherapy resistance. Targeting FGF7 pathways holds therapeutic potential for managing these conditions, underscoring the need for further research to explore its clinical applications. Having more insights into the function and underlying molecular mechanisms of FGF7 is warranted to facilitate the development of effective treatments in the future. Here, we discuss FGF7 genomic structure, signal pathway, expression pattern during embryonic development and in adult organs and mutants along with phenotypes, as well as associated diseases.

2.
Stem Cells Transl Med ; 12(5): 281-292, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184893

RESUMEN

The induction of partial tolerance toward pancreatic autoantigens in the treatment of type 1 diabetes mellitus (T1DM) can be attained by autologous hematopoietic stem cell transplantation (HSCT). However, most patients treated by autologous HSCT eventually relapse. Furthermore, allogeneic HSCT which could potentially provide a durable non-autoimmune T-cell receptor (TCR) repertoire is associated with a substantial risk for transplant-related mortality. We have previously demonstrated an effective approach for attaining engraftment without graft versus host disease (GVHD) of allogeneic T-cell depleted HSCT, following non-myeloablative conditioning, using donor-derived anti-3rd party central memory CD8 veto T cells (Tcm). In the present study, we investigated the ability of this relatively safe transplant modality to eliminate autoimmune T-cell clones in the NOD mouse model which spontaneously develop T1DM. Our results demonstrate that using this approach, marked durable chimerism is attained, without any transplant-related mortality, and with a very high rate of diabetes prevention. TCR sequencing of transplanted mice showed profound changes in the T-cell repertoire and decrease in the prevalence of specific autoimmune T-cell clones directed against pancreatic antigens. This approach could be considered as strategy to treat people destined to develop T1DM but with residual beta cell function, or as a platform for prevention of beta cell destruction after transplantation of allogenic beta cells.

3.
Stem Cells Transl Med ; 11(2): 178-188, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35298657

RESUMEN

Over the last decades, several studies demonstrated the possibility of lung regeneration through transplantation of various lung progenitor populations. Recently, we showed in mice that fetal or adult lung progenitors could potentially provide donor cells for transplantation, provided that the lung stem cell niche in the recipient is vacated of endogenous lung progenitors by adequate conditioning. Accordingly, marked lung regeneration could be attained following i.v. infusion of a single cell suspension of lung cells into recipient mice conditioned with naphthalene (NA) and 6Gy total body irradiation (TBI). As clinical translation of this approach requires the use of allogenic donors, we more recently developed a novel transplantation modality based on co-infusion of hematopoietic and lung progenitors from the same donor. Thus, by virtue of hematopoietic chimerism, which leads to immune tolerance toward donor antigens, the lung progenitors can be successfully engrafted without any need for post-transplant immune suppression. In the present study, we demonstrate that it is possible to replace NA in the conditioning regimen with Cyclophosphamide (CY), approved for the treatment of many diseases and that a lower dose of 2 GY TBI can successfully enable engraftment of donor-derived hematopoietic and lung progenitors when CY is administered in 2 doses after the stem cell infusion. Taken together, our results suggest a feasible and relatively safe protocol that could potentially be translated to clinical transplantation of lung progenitors across major MHC barriers in patients with terminal lung diseases.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Acondicionamiento Pretrasplante , Animales , Ciclofosfamida , Humanos , Indicadores y Reactivos , Pulmón , Ratones , Quimera por Trasplante , Acondicionamiento Pretrasplante/métodos
4.
Cell Rep ; 30(3): 807-819.e4, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968255

RESUMEN

Induction of lung regeneration by transplantation of lung progenitor cells is a critical preclinical challenge. Recently, we demonstrated that robust lung regeneration can be achieved if the endogenous stem cell niches in the recipient's lung are vacated by sub-lethal pre-conditioning. However, overcoming MHC barriers is an additional requirement for clinical application of this attractive approach. We demonstrate here that durable tolerance toward mis-matched lung progenitors and their derivatives can be achieved without any chronic immune suppression, by virtue of co-transplantation with hematopoietic progenitors from the same donor. Initial proof of concept of this approach was attained by transplantation of fetal lung cells comprising both hematopoietic and non-hematopoietic progenitors. Furthermore, an even higher rate of blood and epithelial lung chimerism was attained by using adult lung cells supplemented with bone marrow hematopoietic progenitors. These results lay the foundation for repair of lung injury through a procedure akin to bone marrow transplantation.


Asunto(s)
Linaje de la Célula/genética , Pulmón/fisiología , Regeneración/genética , Trasplante de Células Madre , Células Madre Adultas/citología , Animales , Autorrenovación de las Células , Quimera , Feto/citología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Tolerancia Inmunológica , Pulmón/embriología , Ratones Endogámicos C57BL , Donantes de Tejidos , Acondicionamiento Pretrasplante
5.
Stem Cells Transl Med ; 7(1): 68-77, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29266820

RESUMEN

Repair of injured lungs represents a longstanding therapeutic challenge. We recently demonstrated that human and mouse embryonic lung tissue from the canalicular stage of development are enriched with lung progenitors, and that a single cell suspension of canalicular lungs can be used for transplantation, provided that lung progenitor niches in the recipient mice are vacated by strategies similar to those used in bone marrow transplantation. Considering the ethical limitations associated with the use of fetal cells, we investigated here whether adult lungs could offer an alternative source of lung progenitors for transplantation. We show that intravenous infusion of a single cell suspension of adult mouse lungs from GFP+ donors, following conditioning of recipient mice with naphthalene and subsequent sublethal irradiation, led to marked colonization of the recipient lungs, at 6-8 weeks post-transplant, with donor derived structures including epithelial, endothelial, and mesenchymal cells. Epithelial cells within these donor-derived colonies expressed markers of functionally distinct lung cell types, and lung function, which is significantly compromised in mice treated with naphthalene and radiation, was found to be corrected following transplantation. Dose response analysis suggests that the frequency of patch forming cells in adult lungs was about threefold lower compared to that found in E16 fetal lungs. However, as adult lungs are much larger, the total number of patch forming cells that can be collected from this source is significantly greater. Our study provides proof of concept for lung regeneration by adult lung cells after preconditioning to vacate the pulmonary niche. Stem Cells Translational Medicine 2018;7:68-77.


Asunto(s)
Células Epiteliales/trasplante , Regeneración Tisular Dirigida/métodos , Lesión Pulmonar/terapia , Pulmón/citología , Trasplante de Células Madre , Células Madre/citología , Animales , Células Cultivadas , Células Epiteliales/citología , Femenino , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Naftalenos/toxicidad
6.
PLoS One ; 6(6): e21389, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21731727

RESUMEN

UDP-N-acetylglucosamine 2 epimerase/N-acetylmannosamime kinase (GNE) is a bifunctional enzyme which catalyzes the two key sequential steps in the biosynthetic pathway of sialic acid, the most abundant terminal monosaccharide on glycoconjugates of eukaryotic cells. GNE knock out (GNE KO) mice are embryonically lethal at day E8.5. Although the role of GNE in the sialic pathway has been well established as well as the importance of sialylation in many diverse biological pathways, less is known about the involvement of GNE in muscle development. To address this issue we have studied the role of GNE during in vitro embryogenesis by comparing the developmental profile in culture of embryonic stem cells (ES) from wild type and from GNE KO E3.5 mice embryos, during 45 days. Neuronal cells appeared rarely in GNE KO ES cultures and did not reach an advanced differentiated stage. Although primary cardiac cells appeared at the same time in both normal and GNE KO ES cultures, GNE KO cardiac cells degraded very soon and their beating capacity decayed rapidly. Furthermore very rare skeletal muscle committed cells were detected in the GNE KO ES cultures at any stage of differentiation, as assessed by analysis of the expression of either Pax7, MyoD and MyHC markers. Beyond the supporting evidence that GNE plays an important role in neuronal cell and brain development, these results show that GNE is strongly involved in cardiac tissue and skeletal muscle early survival and organization. These findings could open new avenues in the understanding of muscle function mechanisms in health and in disease.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/crecimiento & desarrollo , Miocardio/enzimología , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Forma de la Célula , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Noqueados , Complejos Multienzimáticos/deficiencia , Ácido N-Acetilneuramínico/metabolismo , Factores de Tiempo
7.
PLoS One ; 6(1): e16334, 2011 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-21305017

RESUMEN

Hereditary inclusion body myopathy (HIBM) is an adult onset, slowly progressive distal and proximal myopathy. Although the causing gene, GNE, encodes for a key enzyme in the biosynthesis of sialic acid, its primary function in HIBM remains unknown. The goal of this study was to unravel new clues on the biological pathways leading to HIBM by proteomic comparison. Muscle cultures and biopsies were analyzed by two dimensional gel electrophoresis (2-DE) and the same biopsy extracts by isobaric tag for relative and absolute quantitation (iTRAQ). Proteins that were differentially expressed in all HIBM specimens versus all controls in each analysis were identified by mass spectrometry. The muscle cultures 2-DE analysis yielded 41 such proteins, while the biopsies 2-DE analysis showed 26 differentially expressed proteins. Out of the 400 proteins identified in biopsies by iTRAQ, 41 showed altered expression. In spite of the different nature of specimens (muscle primary cultures versus muscle biopsies) and of the different methods applied (2D gels versus iTRAQ) the differentially expressed proteins identified in each of the three analyses where related mainly to the same pathways, ubiquitination, stress response and mitochondrial processes, but the most robust cluster (30%) was assigned to cytoskeleton and sarcomere organization. Taken together, these findings indicate a possible novel function of GNE in the muscle filamentous apparatus that could be involved in the pathogenesis of HIBM.


Asunto(s)
Proteoma/análisis , Biopsia , Análisis por Conglomerados , Electroforesis en Gel Bidimensional , Humanos , Espectrometría de Masas , Complejos Multienzimáticos/genética , Músculo Esquelético/metabolismo , Miositis por Cuerpos de Inclusión/congénito , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/metabolismo , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...