Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Toxicol Lett ; 385: 12-20, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37572970

RESUMEN

Detrimental effects of smoking on mesenchymal stem cell (MSC)-dependent immunosuppression and hepatoprotection are unknown. Herewith, by using α-galactosylceramide (α-GalCer)-induced liver injury, a well-established murine model of fulminant hepatitis, we examined molecular mechanisms which were responsible for negative effects of cigarette smoke on MSC-dependent immunomodulation. MSC which were grown in cigarette smoke-exposed medium (MSCWS-CM) obtained pro-inflammatory phenotype, were not able to optimally produce hepatoprotective and immunosuppressive cytokines (TGF-ß, HGF, IL-10, NO, KYN), and secreted significantly higher amounts of inflammatory cytokines (IFN-γ, TNF-α, IL-17, IL-6) than MSC that were cultured in standard medium never exposed to cigarette smoke (MSCCM). In contrast to MSCCM, which efficiently attenuated α-GalCer-induced hepatitis, MSCWS-CM were not able to prevent hepatocyte injury and liver inflammation. MSCWS-CM had reduced capacity for the suppression of liver-infiltrated inflammatory macrophages, dendritic cells (DCs) and lymphocytes. Although significantly lower number of IL-12-producing macrophages and DCs, TNF-α, IFN-γ or IL-17-producing CD4 + and CD8 +T lymphocytes, NK and NKT cells were noticed in the livers of α-GalCer+MSCCM-treated mice compared to α-GalCer+saline-treated animals, this phenomenon was not observed in α-GalCer-injured mice that received MSCWS-CM. MSCWS-CM could not induce expansion of anti-inflammatory IL-10-producing FoxP3 +CD4 + and CD8 + T regulatory cells and were not able to create immunosuppressive microenvironment in the liver as MSCCM. Similarly as it was observed in mice, MSCWS-CM were not able to optimally inhibit production of inflammatory and hepatototoxic cytokines in activated human Th1/Th17 and NKT1/NKT17 cells, confirming the hypothesis that cigarette smoke significantly attenuates therapeutic potential of MSC in cell-based immunotherapy of inflammatory liver diseases.


Asunto(s)
Fumar Cigarrillos , Hepatitis , Fallo Hepático Agudo , Células Madre Mesenquimatosas , Humanos , Animales , Ratones , Interleucina-10 , Interleucina-17 , Factor de Necrosis Tumoral alfa , Fumar , Fallo Hepático Agudo/inducido químicamente , Citocinas
2.
Anal Cell Pathol (Amst) ; 2022: 3655595, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757015

RESUMEN

Breast cancer is considered refractory to immunotherapy. Accordingly, there is an urgent need for the therapeutic use of new immunostimulatory agents which would enhance antitumor immune response against breast cancer cells. "Derived Multiple Allogeneic Protein Paracrine Signaling (d-MAPPS)" is a biological product whose activity is based on chemokines and cytokines that modulate homing and phenotype of immune cells. d-MAPPS contains high concentration of dendritic cell (DC) and T cell-attracting chemokine CXCL16 and potent T cell-activating cytokine IL-27 which enhance DC:T cell cross-talk in inflamed tissues. Herewith, we used 4T1 murine model of breast cancer to analyze d-MAPPS-dependent enhancement of T cell-driven antitumor immunity. 4T1+d-MAPPS-treated mice showed delayed mammary tumor appearance compared to 4T1+saline-treated animals. d-MAPPS significantly reduced tumor weight and volume and improved survival of 4T1-treated mice. Significantly increased concentration of CXCL16, IL-27, IFN-γ, and IL-17 and decreased concentration of immunosuppressive TGF-ß and IL-10 were measured in serum samples and tumor tissues of 4T1+d-MAPPS-treated mice. d-MAPPS enhanced production of IL-12 and increased expression of MHC class II and costimulatory molecules on tumor-infiltrated DC, significantly improving their antigen-presenting properties. d-MAPPS in CXCL16-dependent manner promoted recruitment of antitumorigenic IFN-γ/IL-17-producing CD4+Th1/Th17 cells and in IL-27-dependent manner induced expansion of tumoricidal CD178+granzyme B-expressing CD8+CTLs and inhibited generation of tolerogenic DC, IL-10, and TGF-ß-producing FoxP3-expressing T regulatory cells. In summing up, d-MAPPS, in CXL16- and IL-27-dependent manner, enhanced T cell-driven antitumor immune response and suppressed breast cancer growth in experimental mice.


Asunto(s)
Neoplasias de la Mama , Carcinoma , Trasplante de Células Madre Hematopoyéticas , Interleucina-27 , Animales , Citocinas , Células Dendríticas/metabolismo , Femenino , Humanos , Inmunidad , Interleucina-10/metabolismo , Interleucina-17 , Ratones , Ratones Endogámicos BALB C , Comunicación Paracrina , Factor de Crecimiento Transformador beta
3.
J Inorg Biochem ; 233: 111861, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35599165

RESUMEN

Four new complexes of copper(II) with S,O-tetradentate ligands, derivatives of thiosalicylic acid, encompassing an ethylene-, propylene-, butylene- and pentylene- bridge, were synthesized and characterized by microanalysis, molecular conductance and infrared (IR) spectra. The structures were assumed based on the previously mentioned analyses and confirmed with the results of electron paramagnetic resonance (EPR) spectra. The reactivity of complexes towards L-methionine (L-Met), L-cysteine (L-Cys) and guanosine-5'-monophosphate (5'-GMP) was also examined. Complex C1 ([Cu(S,O-ethylene-thiosalicylic acid)(H2O)2]) containing two inert methylene groups in the side chain of ligand shows the highest reactivity, while the least reactive is complex C4 ([Cu(S,O-pentylene-thiosalicylic acid)(H2O)2]) with five methylene groups. All complexes showed the highest reactivity towards L-Met and the lowest reactivity towards 5'-GMP. The interactions of complexes C1-C4 with calf thymus DNA (ct-DNA) were examined by ultraviolet-visible (UV-Vis) absorption and fluorescence spectral studies, revealing good DNA interaction abilities. All synthesized complexes C1-C4 show to interact with human serum albumin (HSA) with high values of binding constants. Complexes interaction with DNA/HSA was also confirmed using molecular docking simulations. All synthesized complexes reduce viability of human colon, breast and lung cancer cells, evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric technique. The complex [Cu(S,O-pentylene- thiosalicylic acid)(H2O)2] showed the highest binding affinity constants to DNA/HSA and highest cytotoxicity, thus presenting a good candidate for further pharmacological research in the field of colon, breast and lung cancer therapy.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Cobre/química , Cobre/metabolismo , ADN/química , ADN/metabolismo , Etilenos/metabolismo , Guanosina Monofosfato/metabolismo , Humanos , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Albúmina Sérica Humana/química
4.
Adv Exp Med Biol ; 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35389200

RESUMEN

Research has shown that mesenchymal stem cells (MSCs) could be a promising therapy for treating progressive heart disease. However, translation into clinics efficiently and successfully has proven to be much more complicated. Many questions remain for optimizing treatment. Application method influences destiny of MSCs and afterwards impacts results of procedure, yet there is no general agreement about most suitable method of MSC delivery in the clinical setting. Herein, we explain principle of most-frequent MSCs delivery techniques in cardiology. This chapter summarizes crucial translational obstacles of clinical employment of MSCs for cardiac repair when analysed trough a prism of latest research centred on different techniques of MSCs application.

5.
J Inorg Biochem ; 228: 111697, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34999425

RESUMEN

In this study, four hybrid organic-inorganic compounds (8-H2Q)2[PdCl4] (1), (H2ClQ)2[PdCl4] (2), (H2NQ)2[PdCl4] (3) and (H2MeQ)2[PdCl4]·2H2O (4) (where 8-H2Q = 8-hydroxyquinolinium, H2ClQ = 5-chloro-8-hydroxyquinolinium, H2NQ = 5-nitro-8-hydroxyquinolinium and H2MeQ = 2-methyl-8-hydroxyquinolinium) were synthesized through organic cation modulation. Single-crystal X-ray structure analysis of compounds 1 and 3 indicates that their structures are planar and consist of [PdCl4]2- anions and 8-H2Q or H2NQ cations, respectively. Both ionic components are held together through ionic interactions and hydrogen bonds forming infinite chains linked through π-π interactions to form 2D structures. Furthermore, NMR spectroscopy, UV-Vis spectroscopy, elemental analysis, and FT-IR spectroscopy were used to explore the synthesized compounds. The DNA interaction, antimicrobial activity, antiproliferative activity, and radical scavenging effect of the compounds were evaluated. The hybrid compounds and their free ligands can interact with the calf thymus DNA via an intercalation mode involving the insertion of the aromatic chromophore between the base pairs of DNA; compound 1 has the highest binding affinity. Moreover, they have high antimicrobial efficacy against the tested 14 strains of microorganisms with minimum inhibitory concentration values ranging from <1.95 to 250 µg/mL. The antiproliferative activity of the compounds was investigated against three different cancer cell lines, and their selectivity was verified on mesenchymal stem cells. Compounds 1 and 2 displayed selective and high cytotoxicity against human lung and breast cancer cells and showed moderate cytotoxicity against colon cancer cells. Accordingly, they might be auspicious candidates for future pharmacological investigations in lung and breast cancer research.


Asunto(s)
Complejos de Coordinación/química , Hidroxiquinolinas/química , Paladio/química , Compuestos de Quinolinio/química , Células A549 , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Quelantes/química , Cristalografía por Rayos X/métodos , ADN/química , Depuradores de Radicales Libres/química , Células HCT116 , Humanos , Hidroxiquinolinas/síntesis química , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Pruebas de Sensibilidad Microbiana/métodos , Estructura Molecular , Compuestos de Quinolinio/síntesis química , Especies Reactivas de Oxígeno/metabolismo
6.
Front Cell Dev Biol ; 9: 709183, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540831

RESUMEN

For a long time, animal models were used to mimic human biology and diseases. However, animal models are not an ideal solution due to numerous interspecies differences between humans and animals. New technologies, such as human-induced pluripotent stem cells and three-dimensional (3D) cultures such as organoids, represent promising solutions for replacing, refining, and reducing animal models. The capacity of organoids to differentiate, self-organize, and form specific, complex, biologically suitable structures makes them excellent in vitro models of development and disease pathogenesis, as well as drug-screening platforms. Despite significant potential health advantages, further studies and considerable nuances are necessary before their clinical use. This article summarizes the definition of embryoids, gastruloids, and organoids and clarifies their appliance as models for early development, diseases, environmental pollution, drug screening, and bioinformatics.

7.
Stem Cells Int ; 2020: 8842659, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695181

RESUMEN

There is still a lively debate about whether mesenchymal stem cells (MSCs) promote or suppress antitumor immune response. Although several possible explanations have been proposed, including different numbers of injected and engrafted MSCs, heterogeneity in phenotype, and function of tumor cells, the exact molecular mechanisms responsible for opposite effects of MSCs in modulation of antitumor immunity are still unknown. Herewith, we used a B16F10 murine melanoma model to investigate whether timing of MSC administration in tumor-bearing mice was crucially important for their effects on antitumor immunity. MSCs, intravenously injected 24 h after melanoma induction (B16F10+MSC1d-treated mice), significantly enhanced natural killer (NK) and T cell-driven antitumor immunity, suppressed tumor growth, and improved survival of melanoma-bearing animals. Significantly higher plasma levels of antitumorigenic cytokines (TNF-α and IFN-γ), remarkably lower plasma levels of immunosuppressive cytokines (TGF-ß and IL-10), and a significantly higher number of tumor-infiltrating, IFN-γ-producing, FasL- and granzyme B-expressing NK cells, IL-17-producing CD4+Th17 cells, IFN-γ- and TNF-α-producing CD4+Th1 cells, and CD8+cytotoxic T lymphocytes (CTLs) were observed in B16F10+MSC1d-treated mice. On the contrary, MSCs, injected 14 days after melanoma induction (B16F10+MSC14d-treated mice), promoted tumor growth by suppressing antigen-presenting properties of tumor-infiltrating dendritic cells (DCs) and macrophages and by reducing tumoricidal capacity of NK cells and T lymphocytes. Significantly higher plasma levels of TGF-ß and IL-10, remarkably lower plasma levels of TNF-α and IFN-γ, and significantly reduced number of tumor-infiltrating, I-A-expressing, and IL-12-producing macrophages, CD80- and I-A-expressing DCs, granzyme B-expressing CTLs and NK cells, IFN-γ- and IL-17-producing CTLs, CD4+Th1, and Th17 cells were observed in B16F10+MSC14d-treated animals. In summing up, the timing of MSC administration into the tumor microenvironment was crucially important for MSC-dependent modulation of antimelanoma immunity. MSCs transplanted during the initial phase of melanoma growth exerted tumor-suppressive effect, while MSCs injected during the progressive stage of melanoma development suppressed antitumor immunity and enhanced tumor expansion.

8.
Anal Cell Pathol (Amst) ; 2020: 3153891, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257769

RESUMEN

Mesenchymal stem cells (MSCs), due to their potential for differentiation into alveolar epithelial cells and their immunosuppressive characteristics, are considered a new therapeutic agent in cell-based therapy of inflammatory lung disorders, including chronic obstructive pulmonary disease (COPD). Since most of the MSC-mediated beneficent effects were the consequence of their paracrine action, herewith, we investigated the effects of a newly designed MSC-derived product "Exosome-derived Multiple Allogeneic Protein Paracrine Signaling (Exo-d-MAPPS)" in the attenuation of chronic airway inflammation by using an animal model of COPD (induced by chronic exposure to cigarette smoke (CS)) and clinical data obtained from Exo-d-MAPPS-treated COPD patients. Exo-d-MAPPS contains a high concentration of immunomodulatory factors which are capable of attenuating chronic airway inflammation, including soluble TNF receptors I and II, IL-1 receptor antagonist, and soluble receptor for advanced glycation end products. Accordingly, Exo-d-MAPPS significantly improved respiratory function, downregulated serum levels of inflammatory cytokines (TNF-α, IL-1ß, IL-12, and IFN-γ), increased serum concentration of immunosuppressive IL-10, and attenuated chronic airway inflammation in CS-exposed mice. The cellular makeup of the lungs revealed that Exo-d-MAPPS treatment attenuated the production of inflammatory cytokines in lung-infiltrated macrophages, neutrophils, and natural killer and natural killer T cells and alleviated the antigen-presenting properties of lung-infiltrated macrophages and dendritic cells (DCs). Additionally, Exo-d-MAPPS promoted the expansion of immunosuppressive IL-10-producing alternatively activated macrophages, regulatory DCs, and CD4+FoxP3+T regulatory cells in inflamed lungs which resulted in the attenuation of chronic airway inflammation. In a similar manner, as it was observed in an animal model, Exo-d-MAPPS treatment significantly improved the pulmonary status and quality of life of COPD patients. Importantly, Exo-d-MAPPS was well tolerated since none of the 30 COPD patients reported any adverse effects after Exo-d-MAPPS administration. In summing up, we believe that Exo-d-MAPPS could be considered a potentially new therapeutic agent in the treatment of chronic inflammatory lung diseases whose efficacy should be further explored in large clinical trials.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Exosomas , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Anciano , Animales , Exosomas/metabolismo , Femenino , Humanos , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Placenta/citología , Embarazo , Enfermedad Pulmonar Obstructiva Crónica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA