Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 725: 150215, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38870845

RESUMEN

Cardiac ischemia results in anaerobic metabolism and lactic acid accumulation and with time, intracellular and extracellular acidosis. Ischemia and subsequent reperfusion injury (IRI) lead to various forms of programmed cell death. Necroptosis is a major form of programmed necrosis that worsens cardiac function directly and also promotes inflammation by the release of cellular contents. Potential effects of increasing acidosis on programmed cell death and their specific components have not been well studied. While apoptosis is caspase-dependent, in contrast, necroptosis is mediated by the receptor-interacting protein kinases 1 and 3 (RIPK1/3). In our study, we observed that at physiological pH = 7.4, caspase-8 inhibition did not prevent TNFα-induced cell death in mouse cardiac vascular endothelial cells (MVECs) but promoted necroptotic cell death. As expected, necroptosis was blocked by RIPK1 inhibition. However, at pH = 6.5, TNFα induced an apoptosis-like pattern which was inhibited by caspase-8 inhibition. Interestingly phosphorylation of necroptotic molecules RIPK1, RIPK3, and mixed lineage kinase domain-like protein (MLKL) was enhanced in an acidic pH environment. However, RIPK3 and MLKL phosphorylation was self-limited which may have limited their participation in necroptosis. In addition, an acidic pH promoted apoptosis-inducing factor (AIF) cleavage and nuclear translocation. AIF RNA silencing inhibited cell death, supporting the role of AIF in this cell death. In summary, our study demonstrated that the pH of the micro-environment during inflammation can bias cell death pathways by altering the function of necroptosis-related molecules and promoting AIF-mediated cell death. Further insights into the mechanisms by which an acidic cellular micro-environment influences these and perhaps other forms of regulated cell death, may lead to therapeutic strategies to attenuate IRI.


Asunto(s)
Apoptosis , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Factor de Necrosis Tumoral alfa , Animales , Concentración de Iones de Hidrógeno , Apoptosis/efectos de los fármacos , Necroptosis/efectos de los fármacos , Ratones , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Factor de Necrosis Tumoral alfa/metabolismo , Caspasa 8/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Células Cultivadas , Fosforilación , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología
2.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674016

RESUMEN

Organ transplantation is associated with various forms of programmed cell death which can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis plays a key role in promoting transplant injury. Recently, we have found that mitochondria function is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2 indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01) in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell death in two different pathways and may be potential therapeutic targets in preventing cell death and transplant injury.


Asunto(s)
Dinaminas , Rechazo de Injerto , Trasplante de Corazón , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Ratones , Rechazo de Injerto/metabolismo , Rechazo de Injerto/patología , Trasplante de Corazón/efectos adversos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Dinaminas/metabolismo , Dinaminas/genética , Mitocondrias/metabolismo , Células Endoteliales/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosforilación , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...