Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Pharm Sin B ; 14(7): 3027-3048, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027248

RESUMEN

Endothelial-to-mesenchymal transition (EndMT) is a key driver of atherosclerosis. Aerobic glycolysis is increased in the endothelium of atheroprone areas, accompanied by elevated lactate levels. Histone lactylation, mediated by lactate, can regulate gene expression and participate in disease regulation. However, whether histone lactylation is involved in atherosclerosis remains unknown. Here, we report that lipid peroxidation could lead to EndMT-induced atherosclerosis by increasing lactate-dependent histone H3 lysine 18 lactylation (H3K18la) in vitro and in vivo, as well as in atherosclerotic patients' arteries. Mechanistically, the histone chaperone ASF1A was first identified as a cofactor of P300, which precisely regulated the enrichment of H3K18la at the promoter of SNAI1, thereby activating SNAI1 transcription and promoting EndMT. We found that deletion of ASF1A inhibited EndMT and improved endothelial dysfunction. Functional analysis based on Apoe KO Asf1a ECKO mice in the atherosclerosis model confirmed the involvement of H3K18la in atherosclerosis and found that endothelium-specific ASF1A deficiency inhibited EndMT and alleviated atherosclerosis development. Inhibition of glycolysis by pharmacologic inhibition and advanced PROTAC attenuated H3K18la, SNAI1 transcription, and EndMT-induced atherosclerosis. This study illustrates precise crosstalk between metabolism and epigenetics via H3K18la by the P300/ASF1A molecular complex during EndMT-induced atherogenesis, which provides emerging therapies for atherosclerosis.

2.
Zhen Ci Yan Jiu ; 49(5): 441-447, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764114

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Neiguan" (PC6) on pain response in mice injected with complete Freund's adjuvant (CFA) in the hind paw, so as to investigate the mechanism of orexin 1 receptor (OX1R) -endogenous cannabinoid 1 receptor (CB1R) pathway in acupuncture analgesia. METHODS: A total of 48 male C57BL/6 mice were used in the present study. In the first part of this study, 18 mice were randomized into control, model and EA groups, with 6 mice in each group. In the second part of this study, 30 mice were randomized into control, model, EA, EA+Naloxone, EA+OX1R antagonist (SB33486) groups, with 6 mice in each group. Inflammatory pain model was established by subcutaneous injection of 20 µL CFA solution in the left hind paw. EA (2 Hz, 2 mA ) was applied to bilateral PC6 for 20 min, once a day for 5 consecutive days. The mice in the EA+Naloxone and EA+SB33486 groups were intraperitoneally injected with naloxone (10 mg/kg) or SB33486 (15 mg/kg) 15 min before EA intervention on day 5, respectively. Tail-flick method and Von Frey method were used to detect the thermal pain threshold and mechanical pain threshold of mice. Quantitative real-time PCR was used to detect the expression level of ß-endorphin mRNA in periaqueductal gray (PAG) of mice. The expression of OX1R positive cells in the lateral hypothalamic area (LH) and CB1R positive cells in the ventrolateral periaqueductal gray (vlPAG) were detected by immunofluorescence. RESULTS: Compared with the control group, the thermal pain threshold and mechanical pain threshold of the model group were decreased (P<0.001), the expression level of ß-endorphin mRNA in PAG was decreased (P<0.001), and the numbers of OX1R positive cells in LH and CB1R positive cells in vlPAG were decreased (P<0.05, P<0.001). Compared with the model group, the thermal pain threshold and mechanical pain threshold of the EA group were significantly increased (P<0.001), and the numbers of OX1R positive cells in LH and CB1R positive cells in vlPAG were increased (P<0.01, P<0.001). Compared with the EA group, the mechanical pain threshold in the EA+SB33486 group was significantly decreased (P<0.01), but there was no significant difference in the mechanical pain threshold between the EA+Naloxone group and EA group, and the numbers of OX1R positive neurons in LH and CB1R positive neurons in vlPAG were decreased in the EA+SB33486 group (P<0.001). CONCLUSIONS: EA at PC6 can achieve analgesic effect on CFA mice by activating the OX1R-CB1R pathway in the brain, and this effect is opioid-independent.


Asunto(s)
Puntos de Acupuntura , Encéfalo , Electroacupuntura , Receptores de Orexina , Dolor , Animales , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Inflamación/terapia , Inflamación/metabolismo , Inflamación/genética , Ratones Endogámicos C57BL , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Dolor/metabolismo , Dolor/genética , Manejo del Dolor
3.
Adv Mater ; 36(29): e2401361, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38721975

RESUMEN

Senescence plays a critical role in the development and progression of various diseases. This study introduces an amorphous, high-entropy alloy (HEA)-based nanozyme designed to combat senescence. By adjusting the nanozyme's composition and surface properties, this work analyzes its catalytic performance under both normal and aging conditions, confirming that peroxide and superoxide dismutase (SOD) activity are crucial for its anti-aging therapeutic function. Subsequently, the chiral-dependent therapeutic effect is validated and the senolytic performance of D-handed PtPd2CuFe across several aging models is confirmed. Through multi-Omics analyses, this work explores the mechanism underlying the senolytic action exerted by nanozyme in depth. It is confirm that exposure to senescent conditions leads to the enrichment of copper and iron atoms in their lower oxidation states, disrupting the iron-thiol cluster in mitochondria and lipoic acid transferase, as well as oxidizing unsaturated fatty acids, triggering a cascade of cuproptosis and ferroptosis. Additionally, the concentration-dependent anti-aging effects of nanozyme is validated. Even an ultralow dose, the therapeutic can still act as a senomorphic, reducing the effects of senescence. Given its broad-spectrum action and concentration-adjustable anti-aging potential, this work confirms the remarkable therapeutic capability of D-handed PtPd2CuFe in managing atherosclerosis, a disease involving various types of senescent cells.


Asunto(s)
Aterosclerosis , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Humanos , Animales , Ratones , Cobre/química , Cobre/farmacología , Aleaciones/química , Aleaciones/farmacología , Hierro/química , Superóxido Dismutasa/metabolismo , Senescencia Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos
4.
Cell Rep ; 43(5): 114180, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38733581

RESUMEN

Macrophage activation is a hallmark of atherosclerosis, accompanied by a switch in core metabolism from oxidative phosphorylation to glycolysis. The crosstalk between metabolic rewiring and histone modifications in macrophages is worthy of further investigation. Here, we find that lactate efflux-associated monocarboxylate transporter 4 (MCT4)-mediated histone lactylation is closely related to atherosclerosis. Histone H3 lysine 18 lactylation dependent on MCT4 deficiency activated the transcription of anti-inflammatory genes and tricarboxylic acid cycle genes, resulting in the initiation of local repair and homeostasis. Strikingly, histone lactylation is characteristically involved in the stage-specific local repair process during M1 to M2 transformation, whereas histone methylation and acetylation are not. Gene manipulation and protein hydrolysis-targeted chimerism technology are used to confirm that MCT4 deficiency favors ameliorating atherosclerosis. Therefore, our study shows that macrophage MCT4 deficiency, which links metabolic rewiring and histone modifications, plays a key role in training macrophages to become repair and homeostasis phenotypes.


Asunto(s)
Aterosclerosis , Histonas , Lisina , Macrófagos , Transportadores de Ácidos Monocarboxílicos , Histonas/metabolismo , Macrófagos/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Animales , Ratones , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Lisina/metabolismo , Humanos , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Activación de Macrófagos , Ratones Endogámicos C57BL
5.
Biochem Biophys Res Commun ; 715: 149979, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678779

RESUMEN

Endothelial dysfunction is an initiating factor in atherosclerosis. Endothelial cells (ECs) are constantly subject to blood flow shear stress, and atherosclerotic plaques tend to occur in aortic bends or bifurcations impaired by low oscillatory shear stress (OSS). However, the mechanism that how OSS affects the initiation and progression of atherosclerosis remains to be explored. Here, we first reported that OSS can promote endothelial dysfunction and atherogenesis in vivo and in vitro by activating STING pathway. Mechanistically, at atherosclerosis-prone areas, OSS caused mitochondria damage in ECs, leading to the leakage of mitochondrial DNA (mtDNA) into the cytoplasm. The cytoplasmic mtDNA was recognized by cGAS to produce cGAMP, activating the STING pathway and leading to endothelial senescence, which resulted in endothelial dysfunction and atherosclerosis. We found that STING was activated in plaques of atherosclerotic patients and in aortic arch ECs of high-fat diet (HFD)-fed ApoeKO mice, as well as in ECs exposed to OSS. STING-specific deficiency in ECs attenuates endothelial senescence and resulted in a significant reduction in aortic arch plaque area in HFD-fed ApoeKO mice. Consistently, specific deficiency or pharmacological inhibition of STING attenuated OSS-induced senescence and endothelial dysfunction. Pharmacological depletion of mtDNA ameliorated OSS-induced senescence and endothelial dysfunction. Taken together, our study linked hemodynamics and endothelial senescence, and revealed a novel mechanism by which OSS leads to endothelial dysfunction. Our study provided new insights into the development of therapeutic strategies for endothelial senescence and atherosclerosis.


Asunto(s)
Aterosclerosis , Senescencia Celular , Células Endoteliales , Proteínas de la Membrana , Estrés Mecánico , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Células Cultivadas , Senescencia Celular/genética , Dieta Alta en Grasa , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patología
6.
World J Diabetes ; 15(3): 530-551, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38591077

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is one of the serious complications of diabetes mellitus, and the existing treatments cannot meet the needs of today's patients. Traditional Chinese medicine has been validated for its efficacy in DKD after many years of clinical application. However, the specific mechanism by which it works is still unclear. Elucidating the molecular mechanism of the Nardostachyos Radix et Rhizoma-rhubarb drug pair (NRDP) for the treatment of DKD will provide a new way of thinking for the research and development of new drugs. AIM: To investigate the mechanism of the NRDP in DKD by network pharmacology combined with molecular docking, and then verify the initial findings by in vitro experiments. METHODS: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to screen active ingredient targets of NRDP. Targets for DKD were obtained based on the Genecards, OMIM, and TTD databases. The VENNY 2.1 database was used to obtain DKD and NRDP intersection targets and their Venn diagram, and Cytoscape 3.9.0 was used to build a "drug-component-target-disease" network. The String database was used to construct protein interaction networks. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology analysis were performed based on the DAVID database. After selecting the targets and the active ingredients, Autodock software was used to perform molecular docking. In experimental validation using renal tubular epithelial cells (TCMK-1), we used the Cell Counting Kit-8 assay to detect the effect of NRDP on cell viability, with glucose solution used to mimic a hyperglycemic environment. Flow cytometry was used to detect the cell cycle progression and apoptosis. Western blot was used to detect the protein expression of STAT3, p-STAT3, BAX, BCL-2, Caspase9, and Caspase3. RESULTS: A total of 10 active ingredients and 85 targets with 111 disease-related signaling pathways were obtained for NRDP. Enrichment analysis of KEGG pathways was performed to determine advanced glycation end products (AGEs)-receptor for AGEs (RAGE) signaling as the core pathway. Molecular docking showed good binding between each active ingredient and its core targets. In vitro experiments showed that NRDP inhibited the viability of TCMK-1 cells, blocked cell cycle progression in the G0/G1 phase, and reduced apoptosis in a concentration-dependent manner. Based on the results of Western blot analysis, NRDP differentially downregulated p-STAT3, BAX, Caspase3, and Caspase9 protein levels (P < 0.01 or P < 0.05). In addition, BAX/BCL-2 and p-STAT3/STAT3 ratios were reduced, while BCL-2 and STAT3 protein expression was upregulated (P < 0.01). CONCLUSION: NRDP may upregulate BCL-2 and STAT3 protein expression, and downregulate BAX, Caspase3, and Caspase9 protein expression, thus activating the AGE-RAGE signaling pathway, inhibiting the vitality of TCMK-1 cells, reducing their apoptosis. and arresting them in the G0/G1 phase to protect them from damage by high glucose.

7.
Dev Cell ; 59(9): 1175-1191.e7, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38521055

RESUMEN

In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a-/- mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Ferroptosis , Metaplasia , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies Reactivas de Oxígeno , Regeneración , Estómago , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Ferroptosis/fisiología , Estómago/patología , Regeneración/fisiología , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Metaplasia/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Mucosa Gástrica/metabolismo , Ratones Endogámicos C57BL , Células Principales Gástricas/metabolismo , Células Acinares/metabolismo , Ratones Noqueados , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Péptidos y Proteínas de Señalización Intercelular
8.
J Gastroenterol ; 59(4): 285-301, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38242996

RESUMEN

Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.


Asunto(s)
Gastritis Atrófica , Lesiones Precancerosas , Neoplasias Gástricas , Animales , Ratones , Neoplasias Gástricas/genética , Lesiones Precancerosas/patología , Biomarcadores , Metaplasia , Mucosa Gástrica/patología
9.
Zhen Ci Yan Jiu ; 49(1): 30-36, 2024 Jan 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38239136

RESUMEN

OBJECTIVES: To observe the effects of electroacupuncture(EA) on local inflammatory mediators and macrophage polarization, and immune cells in the spleen of mice with chronic inflammatory pain induced by complete Freund's adjuvant (CFA) in the hind paw, so as to investigate the immunoinflammatory regulatory mechanisms of EA in relieving pain and swelling in mice with chronic inflammatory pain. METHODS: Thirty C57BL/6 mice were randomly divided into control, model, and EA groups, with 10 mice in each group. Chronic inflammatory pain model were established by subcutaneous injection of 20 µL CFA solution in the left hind paw for 7 consecutive days. After modeling, mice in the EA group received EA at bilateral "Zusanli"(ST36) for 20 min (2 Hz/100 Hz, 1 mA) once a day for 18 consecutive days. Mechanical pain threshold, heat pain thresholds, and paw thickness were measured before and after mode-ling, and after interventions. Western blot was used to detect the expression of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, and NOD-like receptor protein 3 (NLRP3) in the paw tissue. Immunohistochemistry was used to detect the positive expression of M1-type macrophage marker inducible nitric oride synthase (iNOS) and M2-type marker CD206 in the paw, and flow cytometry was used to detect the proportion of F4/80+ CD11b+ macrophages, Ly6G+ CD11b+ neutrophils, and CD25+ Foxp3+ regulatory T cells (Treg) in the spleen. RESULTS: Compared with the control group, mechanical pain and heat pain thresholds were significantly reduced(P<0.000 1), while paw thickness, expressions of IL-1ß, TNF-α, and NLRP3 in the paw, and positive expression of M1 macrophage marker iNOS in the paw, the proportions of macrophages and neutrophils in the spleen were significantly increased (P<0.000 1, P<0.001) in the model group. Compared with the model group, mechanical pain threshold and heat pain thresholds, CD206 positive expression in the paw, and Treg cell proportion in spleen were significantly increased (P<0.01), while paw thickness, the expressions of IL-1ß, TNF-α and NLRP3 in the paw, as well as the positive expression of M1 macrophage marker iNOS in the paw, the proportions of macrophages and neutrophils in the spleen were significantly reduced (P<0.001, P<0.01, P<0.05)in mice of the EA group after intervention. CONCLUSIONS: EA may alleviate pain and swelling in mice with chronic inflammatory pain by regulating the numbers of macrophages, neutrophils, and Treg cells, as well as promoting M2 polarization of local macrophages and inhibiting the release of pro-inflammatory cytokines.


Asunto(s)
Dolor Crónico , Electroacupuntura , Ratones , Animales , Factor de Necrosis Tumoral alfa/genética , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones Endogámicos C57BL , Dolor Crónico/genética , Dolor Crónico/terapia , Interleucina-1beta , Adyuvante de Freund
10.
Arterioscler Thromb Vasc Biol ; 44(1): 156-176, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942612

RESUMEN

BACKGROUND: Senescence is a series of degenerative changes in the structure and physiological function of an organism. Whether JPX (just proximal to XIST)-a newly identified age-related noncoding RNA by us-is associated with atherosclerosis is still unknown. Our study was to investigate the role of JPX and provide insights into potential therapies targeting atherosclerosis. METHODS: We analyzed clinical data from multiple tissues including meniscus tissue, leukemia cells, and peripheral blood monocytes to identify age-related noncoding RNAs in senescent vascular smooth muscle cells (VSMCs). The molecular mechanism of JPX was investigated by capture hybridization analysis of RNA targets and chromatin immunoprecipitation. IGVTools and real-time quantitative polymerase chain reaction were used to evaluate the JPX expression during phenotype regulation in age-related disease models. The therapeutic potential of JPX was evaluated after establishing an atherosclerosis model in smooth muscle-specific Jpx knockout mice. RESULTS: JPX expression was upregulated in activated ras allele (H-rasV12)-induced senescent VSMCs and atherosclerotic arteries. JPX knockdown substantially reduced the elevation of senescence-associated secretory phenotype (SASP) genes in senescent VSMCs. Cytoplasmic DNA leaked from mitochondria via mitochondrial permeability transition pore formed by VDAC1 (voltage-dependent anion channel 1) oligomer activates the STING (stimulator of interferon gene) pathway. JPX could act as an enhancer for the SASP genes and functions as a scaffold molecule through interacting with phosphorylated p65/RelA and BRD4 (bromodomain-containing protein 4) in chromatin remodeling complex, promoting the transcription of SASP genes via epigenetic regulation. Smooth muscle knockout of Jpx in ApoeKO mice resulted in a decrease in plaque area, a reduction in SASP gene expression, and a decrease in senescence compared with controls. CONCLUSIONS: As an enhancer RNA, JPX can integrate p65 and BRD4 to form a chromatin remodeling complex, activating SASP gene transcription and promoting cellular senescence. These findings suggest that JPX is a potential therapeutic target for the treatment of age-related atherosclerosis.


Asunto(s)
Aterosclerosis , ARN Largo no Codificante , Ratones , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Músculo Liso Vascular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromatina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Epigénesis Genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Senescencia Celular/genética , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo
11.
Nat Commun ; 14(1): 822, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788228

RESUMEN

Peritoneal metastasis is the leading cause of death for gastrointestinal cancers. The native and therapy-induced ascites ecosystems are not fully understood. Here, we characterize single-cell transcriptomes of 191,987 ascites cancer/immune cells from 35 patients with/without gastric cancer peritoneal metastasis (GCPM). During GCPM progression, an increase is seen of monocyte-like dendritic cells (DCs) that are pro-angiogenic with reduced antigen-presenting capacity and correlate with poor gastric cancer (GC) prognosis. We also describe the evolution of monocyte-like DCs and regulatory and proliferative T cells following therapy. Moreover, we track GC evolution, identifying high-plasticity GC clusters that exhibit a propensity to shift to a high-proliferative phenotype. Transitions occur via the recently described, autophagy-dependent plasticity program, paligenosis. Two autophagy-related genes (MARCKS and TXNIP) mark high-plasticity GC with poorer prognosis, and autophagy inhibitors induce apoptosis in patient-derived organoids. Our findings provide insights into the developmental trajectories of cancer/immune cells underlying GCPM progression and therapy resistance.


Asunto(s)
Neoplasias Peritoneales , Neoplasias Gástricas , Humanos , Ascitis/genética , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/secundario , Peritoneo/patología , Neoplasias Gástricas/patología
12.
Aging (Albany NY) ; 15(1): 148-163, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36602525

RESUMEN

BACKGROUND: Shaoyao-Gancao Decoction (SG-D) is a famous classical Chinese prescription that has been used in the treatment of numerous kinds of diseases. However, its mechanism of action in the treatment of Gastric carcinoma (GC) is not clear. METHODS: The active ingredients and targets of SG-D were screened using network pharmacology, and GC-related targets were retrieved through several databases. The protein-protein interaction network was then further constructed and GO and KEGG enrichment analysis were performed. Subsequently, molecular docking was carried out. Finally, we validated the results of the network pharmacology by performing in vitro cell experiments on CCK-8, apoptosis, cell cycle, platelet clone formation, and Western blotting with AGS cells. RESULTS: Three key active ingredients and 8 core targets were screened through a network pharmacological analysis, and the results of the KEGG indicated that the PI3K/Akt and MAPK signaling pathways are critical signaling pathways for SG-D to treat GC. Experimental results revealed that SG-D was able to inhibit AGS cells proliferation, induce apoptosis and arrest the cell cycle, and reduce the ability of cell clone formation by regulating the PI3K/Akt and MAPK signaling pathways. CONCLUSIONS: Network pharmacology has shown that SG-D can act on multiple targets through multiple ingredients and treat GC by regulating multiple signaling pathways. In vitro cell experiments have also confirmed this, so as to provide a reference for subsequent related research.


Asunto(s)
Carcinoma , Farmacología en Red , Humanos , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt
14.
Sci Rep ; 12(1): 3947, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273247

RESUMEN

Endophytic bacteria, a rich source of bioactive secondary metabolites, are ideal candidates for environmentally benign agents. In this study, an endophytic strain, Streptomyces sp. AE170020, was isolated and selected for the purification of nematicidal substances based on its high nematicidal activity. Two highly active components, aureothin and alloaureothin, were identified, and their chemical structures were determined using spectroscopic analysis. Both compounds suppressed the growth, reproduction, and behavior of Bursaphelenchus xylophilus. In in vivo experiments, the extracts of strain Streptomyces sp. AE170020 effectively suppressed the development of pine wilt disease in 4-year-old plants of Pinus densiflora. The potency of secondary metabolites isolated from endophytic strains suggests applications in controlling Bursaphelenchus xylophilus and opens an avenue for further research on exploring bioactive substances against the pine wood nematode.


Asunto(s)
Nematodos , Pinus , Streptomyces , Animales , Antinematodos/química , Antinematodos/farmacología , Cromonas/farmacología , Nematodos/microbiología , Enfermedades de las Plantas/prevención & control
15.
Artículo en Inglés | MEDLINE | ID: mdl-35225758

RESUMEN

A light pink coloured bacterium, designated strain BN140002T, was isolated from a soil sample collected in Goesan-gun, Chungcheongbuk-do, Republic of Korea. Cells of strain BN140002T were Gram-stain-negative, aerobic, motile and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed 94.7, 94.7, 93.9, 93.3, 93.4 and 93.0% similarities to Salinarimonas rosea KCTC 22346T, Salinarimonas ramus DSM 22962T, Saliniramus fredricksonii HL-109T, Microvirga soli R491T, Chelatococcus caeni EBR-4-1T and Chelatococcus composti PC-2T, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and summed feature 1 (C12 : 0 aldehyde and/or unknown 10.98) and the predominant ubiquinone was Q-10. The genomic DNA G+C content of strain BN140002T was 70.1 mol%. The genomic orthoANI values between strain BN140002T and Salinarimonas rosea KCTC 22346T and Salinarimonas ramus DSM 22962T were 75.0 and 74.8 %, respectively. Strain BN140002T had a class I-C type CRISPR-Cas system (CRISPR-associated helicase Cas3, CRISPR-associated protein Cas8c, CRISPR-associated protein Cas7, CRISPR-associated RecB family exonuclease Cas4, CRISPR-associated protein 1, 2). Based on phenotypic, chemotaxonomic and phylogenetic data, strain BN140002T should be assigned as a novel species of the genus Salinarimonas, for which the name Salinarimonas soli sp. nov. is proposed. The type strain is BN140002T (=KCTC 42643T=CCTCC AB 2017173T).


Asunto(s)
Alphaproteobacteria/clasificación , Filogenia , Microbiología del Suelo , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
16.
Artículo en Inglés | MEDLINE | ID: mdl-35212620

RESUMEN

A polyphasic taxonomic study was carried out on an actinobacterial strain (AN110305T) isolated from soil sampled in the Republic of Korea. Cells of the strain were Gram-stain-positive, aerobic, non-motile and rod-shaped. Comparative 16S rRNA gene sequence studies showed a clear affiliation of strain AN110305T with Actinomycetia, with highest pairwise sequence similarities to Goodfellowiella coeruleoviolacea DSM 43935T (97.6%), Umezawaea tangerina MK27-91F2T (97.0%), Kutzneria chonburiensis NBRC 110610T (96.9%), Kutzneria buriramensis A-T 1846T (96.8%), Umezawaea endophytica YIM 2047XT (96.8%), Kutzneria albida NRRL B-24060T (96.7%) and Saccharothrix coeruleofusca NRRL B-16115T (96.6%). Cells of strain AN110305T formed pale-yellow colonies on Reasoner's 2A agar. MK-9 (H4) (68%) and MK-10 (H4) (32%) were the predominant menaquinones. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethyl ethanolamine, hydroxy-phosphatidylethanolamine, an unidentified aminolipid and an unidentified aminophospholipid were major polar lipids. Iso-C16:0 (24.5%), anteiso-C15:0 (19.3%), anteiso-C17:0 (15.7%) and iso-C15:0 (15.2%) were the major fatty acids and meso-diaminopimelic acid was the pepdidoglycan. The cell-wall sugars were composed of galactose, glucose, mannose and ribose. The genomic DNA G+C content was 70.7 mol%. Based on genotypic and phenotypic data, strain AN110305T could be distinguished from all genera within the family Pseudonocardiaceae and represents a novel genus and species named Solihabitans fulvus gen. nov., sp nov. The type strain is AN110305T (=KCTC 39307T =DSM 103572T).


Asunto(s)
Actinobacteria/clasificación , Filogenia , Microbiología del Suelo , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Vitamina K 2/química
17.
Cell Mol Gastroenterol Hepatol ; 13(1): 19-33, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34547535

RESUMEN

The stomach is a complex and physiologically necessary organ, yet large differences in physiology between mouse and human stomachs have impeded translation of physiological discoveries and drug screens performed using murine gastric tissues. Gastric cancer (GC) is a global health threat, with a high mortality rate and limited treatment options. The heterogeneous nature of GC makes it poorly suited for current "one size fits all" standard treatments. In this review, we discuss the rapidly evolving field of gastric organoids, with a focus on studies expanding cultures from primary human tissues and describing the benefits of mouse organoid models. We introduce the differing methods for culturing healthy gastric tissue from adult tissues or pluripotent stem cells, discuss the promise these systems have for preclinical drug screens, and highlight applications of organoids for precision medicine. Finally, we discuss the limitations of these models and look to the future to present potential ways gastric organoids will advance treatment options for patients with GC.


Asunto(s)
Organoides , Neoplasias Gástricas , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Medicina de Precisión
18.
J Cancer ; 12(15): 4661-4671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149930

RESUMEN

In recent years, abnormal liver lipid metabolism has emerged as one of the important pathogenesis pathways of primary liver cancer. It is highly important to identify the mechanisms to explore potential prevention and treatment targets. Apolipoprotein M is specifically expressed in the liver and participates in liver lipid metabolism, but the evidence that ApoM affects primary liver cancer is insufficient. The Cancer Genome Atlas (TCGA) database and clinical case analysis, as well as animal level and cell level analysis suggest that the expression level of ApoM gene in cancer tissues is lower than that in paracarcinoma tissues. Further experimental research found that the deletion of ApoM significantly increased the proliferation of mouse liver cancer cells (Hepa1-6) and inhibited the level of apoptosis induced by cisplatin. In addition, mouse liver cancer cells lacking ApoM showed stronger migration and invasion capabilities in transwell experiments. In contrast, overexpression of ApoM in Hepa1-6 cells and Huh-7 cells showed an inhibition of proliferation, up-regulation apoptosis and reduced migration and invasion. In vivo, the deletion of the ApoM accelerated tumorigenesis in nude mice and allowed the mice to develop liver tumor mutations more quickly under the induction of N-nitrosodiethylamine and the survival time of mice was shorter than that control. Therefore, ApoM may be a potential protective factor to inhibit the occurrence and development of primary liver cancer.

19.
Antonie Van Leeuwenhoek ; 114(6): 741-750, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33689054

RESUMEN

A Gram-stain-negative, non-motile, yellow-pigmented and non-spore forming rod-shaped bacterium, designated strain BN140078T, was isolated from farmland soil, Chungbuk, Republic of Korea. It was able to grow aerobically at 10-40 °C (optimum 28 °C), pH 5.5-7.5 (optimum pH 7.0) and with 0-2.0% (w/v) NaCl concentration (optimum 1.0%) on Reasoner's 2A (R2A) agar medium. Comparative 16S rRNA gene sequence analysis showed that the strain BN140078T had 96.9%, 96.5% and 96.1% 16S rRNA gene similarities with Chitinophaga ginsengihumi KACC 17604T, Chitinophaga rupis KACC 14521T and Chitinophaga japonensis KACC 12057T, respectively. The predominant respiratory quinone was menaquinone MK-7 and the major fatty acids (≥ 5%) were C16:1 ω5c, iso-C15:0, iso-C17:0 3-OH and Summed Feature 3 (C16:1 ω7c and/or C16:1 ω6c). The polar lipids were composed of phosphatidylethanolamine, four unidentified amino lipids and six unidentified lipids. The genomic DNA G+C content was 49.5 mol%. The genome of strain BN140078T comprises a number of biosynthetic gene clusters for secondary metabolites, in particular those for non-ribosomal peptide products. The polyphasic taxonomic study clearly distinguished this strain from its closest phylogenetic neighbors. Thus, we propose that the BN140078T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga agrisoli sp. nov. was proposed. The type strain is BN140078T (=KCTC 62555T = CCTCC AB 2018162T).


Asunto(s)
Deferoxamina , Suelo , Técnicas de Tipificación Bacteriana , Bacteroidetes , ADN Bacteriano/genética , Ácidos Grasos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Vitamina K 2
20.
Pest Manag Sci ; 77(4): 1607-1615, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32954637

RESUMEN

BACKGROUND: Pine wilt disease (PWD) is a plant disease that causes serious damage to pine trees. PWD occurs when the host plant is infected with pinewood nematode (PWN), Bursaphelenchus xylophilus. In this study, a compound with nematicidal activity was isolated from actinomycetes and its efficacy was investigated in vitro. RESULT: We screened and selected Streptomyces sp. 680560, which had nematicidal activity against B. xylophilus. Based on 16S rRNA sequence analysis, it showed 99.93% similarity with Streptomyces blastmyceticus NRRB-5480T . Furthermore, the active compound was isolated and identified as teleocidin B4. Teleocidin B4 at concentrations ranging from 6.25 to 100 µM had low nematicidal activity after 24 and 36 h against adult and stage juveniles (J2) of B. xylophilus, but after 48 h nematicidal activity exceeded 95%. The rate of inhibition of egg hatching for Teleocidin B4 6.25, 12.5, 25, 50, and 100 µM was confirmed to be dose-dependently inhibited after 48 h of treatment. Teleocidin B4 is not only toxic to hatched B. xylophilus, but also affects egg hatching. CONCLUSION: This study was carried out to isolate actinomycete metabolites from pine tree endophytes from various natural environments for control of PWD. A compound with nematicidal activity was isolated from a selected strain and its structure was identified as teleocidin B4. The nematicidal effect of the isolated active substance, teleocidin B4, was confirmed. This is the first report of the effect of teleocidin B4 on B. xylophilus, suggesting its possibility as a PWD control agent. © 2020 Society of Chemical Industry.


Asunto(s)
Pinus , Streptomyces , Tylenchida , Animales , Toxinas de Lyngbya , Enfermedades de las Plantas , ARN Ribosómico 16S , Xylophilus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...