Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cells ; 46(6): 374-386, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37077029

RESUMEN

Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.


Asunto(s)
Respuesta al Choque Térmico , Proteostasis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Respuesta al Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Inestabilidad Genómica
2.
BMC Biol ; 20(1): 12, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996455

RESUMEN

BACKGROUND: The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones. RESULTS: We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons. CONCLUSION: We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation.


Asunto(s)
Axones , Factor Neurotrófico Derivado del Encéfalo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas/fisiología , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas
3.
J Pathol ; 255(3): 296-310, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34312845

RESUMEN

Highly developed meningeal lymphatics remove waste products from the brain. Disruption of meningeal lymphatic vessels in a mouse model of amyloid pathology (5XFAD) accelerates the accumulation of amyloid plaques in the meninges and brain, and causes learning and memory deficits, suggesting that clearance of toxic wastes by lymphatic vessels plays a key role in neurodegenerative diseases. Here, we discovered that DSCR1 (Down syndrome critical region 1, known also as RCAN1, regulator of calcineurin 1) facilitates the drainage of waste products by increasing the coverage of dorsal meningeal lymphatic vessels. Furthermore, upregulation of DSCR1 in 5XFAD mice diminishes Aß pathology in the brain and improves memory defects. Surgical ligation of cervical lymphatic vessels afferent to dcLN blocks the beneficial effects of DSCR1 on Aß accumulation and cognitive function. Interestingly, intracerebroventricular delivery of AAV1-DSCR1 to 5XFAD mice is sufficient to rebuild the meningeal lymphatic system and re-establish cognitive performance. Collectively, our data indicate that DSCR1 facilitates the growth of dorsal meningeal lymphatics to improve drainage efficiency and protect against Alzheimer's disease (AD) pathologies, further highlighting that improving meningeal lymphatic function is a feasible treatment strategy for AD. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Enfermedad de Alzheimer/patología , Proteínas de Unión al Calcio/metabolismo , Duramadre/metabolismo , Vasos Linfáticos , Proteínas Musculares/metabolismo , Placa Amiloide/patología , Animales , Sistema Glinfático/metabolismo , Ratones , Ratones Transgénicos , Regulación hacia Arriba
4.
BMB Rep ; 53(1): 3-9, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31818361

RESUMEN

The mitochondrial genome encodes 13 proteins that are components of the oxidative phosphorylation system (OXPHOS), suggesting that precise regulation of these genes is crucial for maintaining OXPHOS functions, including ATP production, calcium buffering, cell signaling, ROS production, and apoptosis. Furthermore, heteroplasmy or mis-regulation of gene expression in mitochondria frequently is associated with human mitochondrial diseases. Thus, various approaches have been developed to investigate the roles of genes encoded by the mitochondrial genome. In this review, we will discuss a wide range of techniques available for investigating the mitochondrial genome, mitochondrial transcription, and mitochondrial translation, which provide a useful guide to understanding mitochondrial gene expression. [BMB Reports 2020; 53(1): 3-9].


Asunto(s)
ADN Mitocondrial/genética , Proteínas Mitocondriales/metabolismo , ARN Mitocondrial/metabolismo , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Mitocondrial/metabolismo , Humanos , Hibridación Fluorescente in Situ , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Mitocondriales/química , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Transcripción Genética
5.
Proc Natl Acad Sci U S A ; 116(32): 16074-16079, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31332012

RESUMEN

Translocation of the endoplasmic reticulum (ER) and mitochondria to the site of axon injury has been shown to facilitate axonal regeneration; however, the existence and physiological importance of ER-mitochondria tethering in the injured axons are unknown. Here, we show that a protein linking ER to mitochondria, the glucose regulated protein 75 (Grp75), is locally translated at axon injury site following axotomy, and that overexpression of Grp75 in primary neurons increases ER-mitochondria tethering to promote regrowth of injured axons. We find that increased ER-mitochondria tethering elevates mitochondrial Ca2+ and enhances ATP generation, thereby promoting regrowth of injured axons. Furthermore, intrathecal delivery of lentiviral vector encoding Grp75 to an animal with sciatic nerve crush injury enhances axonal regeneration and functional recovery. Together, our findings suggest that increased ER-mitochondria tethering at axonal injury sites may provide a therapeutic strategy for axon regeneration.


Asunto(s)
Axones/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Regeneración Nerviosa , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Biosíntesis de Proteínas , Nervio Ciático/lesiones , Nervio Ciático/patología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
6.
EMBO J ; 38(14): e101293, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31304631

RESUMEN

Whether epigenetic factors such as DNA methylation and microRNAs interact to control adult hippocampal neurogenesis is not fully understood. Here, we show that Down syndrome critical region 1 (DSCR1) protein plays a key role in adult hippocampal neurogenesis by modulating two epigenetic factors: TET1 and miR-124. We find that DSCR1 mutant mice have impaired adult hippocampal neurogenesis. DSCR1 binds to TET1 introns to regulate splicing of TET1, thereby modulating TET1 level. Furthermore, TET1 controls the demethylation of the miRNA-124 promoter to modulate miR-124 expression. Correcting the level of TET1 in DSCR1 knockout mice is sufficient to prevent defective adult neurogenesis. Importantly, restoring DSCR1 level in a Down syndrome mouse model effectively rescued adult neurogenesis and learning and memory deficits. Our study reveals that DSCR1 plays a critical upstream role in epigenetic regulation of adult neurogenesis and provides insights into potential therapeutic strategy for treating cognitive defects in Down syndrome.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Síndrome de Down/genética , Hipocampo/citología , MicroARNs/genética , Oxigenasas de Función Mixta/genética , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogénicas/genética , Empalme del ARN , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Epigénesis Genética , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Mutación , Neurogénesis , Regiones Promotoras Genéticas
7.
Mol Cell Biol ; 39(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30478144

RESUMEN

Fragile X syndrome (FXS) caused by loss of fragile X mental retardation protein (FMRP), is the most common cause of inherited intellectual disability. Numerous studies show that FMRP is an RNA binding protein that regulates translation of its binding targets and plays key roles in neuronal functions. However, the regulatory mechanism for FMRP expression is incompletely understood. Conflicting results regarding internal ribosome entry site (IRES)-mediated fmr1 translation have been reported. Here, we unambiguously demonstrate that the fmr1 gene, which encodes FMRP, exploits both IRES-mediated translation and canonical cap-dependent translation. Furthermore, we find that heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) acts as an IRES-transacting factor (ITAF) for IRES-mediated fmr1 translation in neurons. We also show that semaphorin 3A (Sema3A)-induced axonal growth cone collapse is due to upregulation of hnRNP Q and subsequent IRES-mediated expression of FMRP. These data elucidate the regulatory mechanism of FMRP expression and its role in axonal growth cone collapse.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Neuronas/metabolismo , Animales , Línea Celular , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Sitios Internos de Entrada al Ribosoma , Ratones , Ratones Endogámicos C57BL , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Mol Cells ; 41(12): 1000-1007, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30590907

RESUMEN

Mitochondria and endoplasmic reticulum (ER) are essential organelles in eukaryotic cells, which play key roles in various biological pathways. Mitochondria are responsible for ATP production, maintenance of Ca2+ homeostasis and regulation of apoptosis, while ER is involved in protein folding, lipid metabolism as well as Ca2+ homeostasis. These organelles have their own functions, but they also communicate via mitochondrial-associated ER membrane (MAM) to provide another level of regulations in energy production, lipid process, Ca2+ buffering, and apoptosis. Hence, defects in MAM alter cell survival and death. Here, we review components forming the molecular junctions of MAM and how MAM regulates cellular functions. Furthermore, we discuss the effects of impaired ER-mitochondrial communication in various neurodegenerative diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Humanos , Enfermedades Neurodegenerativas/patología
9.
J Neurosci ; 38(20): 4666-4677, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29686046

RESUMEN

Mitochondrial Ca2+ uptake is gated by the mitochondrial calcium uniplex, which is comprised of mitochondrial calcium uniporter (MCU), the Ca2+ pore-forming subunit of the complex, and its regulators. Ca2+ influx through MCU affects both mitochondrial function and movement in neurons, but its direct role in mitochondrial movement has not been explored. In this report, we show a link between MCU and Miro1, a membrane protein known to regulate mitochondrial movement. We find that MCU interacts with Miro1 through MCU's N-terminal domain, previously thought to be the mitochondrial targeting sequence. Our results show that the N-terminus of MCU has a transmembrane domain that traverses the outer mitochondrial membrane, which is dispensable for MCU localization into mitochondria. However, this domain is required for Miro1 interaction and is critical for Miro1 directed movement. Together, our findings reveal Miro1 as a new component of the MCU complex, and that MCU is an important regulator of mitochondrial transport.SIGNIFICANCE STATEMENT Mitochondrial calcium level is critical for mitochondrial metabolic activity and mitochondrial transport in neurons. While it has been established that calcium influx into mitochondria is modulated by mitochondrial calcium uniporter (MCU) complex, how MCU regulates mitochondrial movement still remains unclear. Here, we discover that the N-terminus of MCU plays a different role than previously thought; it is not required for mitochondrial targeting but is essential for interaction with Miro1, an outer mitochondrial membrane protein important for mitochondrial movement. Furthermore, we show that MCU-Miro1 interaction is required to maintain mitochondrial transport. Our data identify that Miro1 is a novel component of the mitochondrial calcium uniplex and demonstrate that coupling between MCU and Miro1 as a novel mechanism modulating both mitochondrial Ca2+ uptake and mitochondrial transport.


Asunto(s)
Canales de Calcio/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Neuronas/fisiología , Proteínas de Unión al GTP rho/fisiología , Animales , Axones/metabolismo , Transporte Biológico Activo/genética , Transporte Biológico Activo/fisiología , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Células Cultivadas , Femenino , Cinética , Ratones , Ratones Endogámicos C57BL , Membranas Mitocondriales/fisiología , Embarazo , Proteínas de Unión al GTP rho/genética
10.
EMBO J ; 37(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29440227

RESUMEN

In neuronal development, dynamic rearrangement of actin promotes axonal growth cone extension, and spatiotemporal translation of local mRNAs in response to guidance cues directs axonal growth cone steering, where cofilin plays a critical role. While regulation of cofilin activity is well studied, regulatory mechanism for cofilin mRNA translation in neurons is unknown. In eukaryotic cells, proteins can be synthesized by cap-dependent or cap-independent mechanism via internal ribosome entry site (IRES)-mediated translation. IRES-mediated translation has been reported in various pathophysiological conditions, but its role in normal physiological environment is poorly understood. Here, we report that 5'UTR of cofilin mRNA contains an IRES element, and cofilin is predominantly translated by IRES-mediated mechanism in neurons. Furthermore, we show that IRES-mediated translation of cofilin is required for both axon extension and axonal growth cone steering. Our results provide new insights into the function of IRES-mediated translation in neuronal development.


Asunto(s)
Axones/fisiología , Cofilina 1/genética , Conos de Crecimiento/fisiología , Sitios Internos de Entrada al Ribosoma/genética , Neurogénesis/genética , Regiones no Traducidas 5'/genética , Animales , Encéfalo/embriología , Sistemas CRISPR-Cas , Línea Celular , Proliferación Celular/genética , Cofilina 1/metabolismo , Ratones , Biosíntesis de Proteínas/genética , ARN Mensajero/genética
11.
Front Cell Neurosci ; 10: 123, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242435

RESUMEN

The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

12.
J Cell Biol ; 213(4): 451-62, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27185837

RESUMEN

Local information processing in the growth cone is essential for correct wiring of the nervous system. As an axon navigates through the developing nervous system, the growth cone responds to extrinsic guidance cues by coordinating axon outgrowth with growth cone steering. It has become increasingly clear that axon extension requires proper actin polymerization dynamics, whereas growth cone steering involves local protein synthesis. However, molecular components integrating these two processes have not been identified. Here, we show that Down syndrome critical region 1 protein (DSCR1) controls axon outgrowth by modulating growth cone actin dynamics through regulation of cofilin activity (phospho/dephospho-cofilin). Additionally, DSCR1 mediates brain-derived neurotrophic factor-induced local protein synthesis and growth cone turning. Our study identifies DSCR1 as a key protein that couples axon growth and pathfinding by dually regulating actin dynamics and local protein synthesis.


Asunto(s)
Axones/metabolismo , Axones/fisiología , Conos de Crecimiento/metabolismo , Conos de Crecimiento/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Musculares/metabolismo , Actinas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Unión al Calcio , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Biosíntesis de Proteínas/fisiología
13.
Trends Neurosci ; 36(12): 685-94, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24075449

RESUMEN

Intellectual disability is characterized by significantly impaired cognitive abilities and is due to various etiological factors, including both genetic and non-genetic causes. Two of the most common genetic forms of intellectual disability are Fragile X syndrome (FXS) and Down syndrome (DS). Recent studies have shown that proteins altered in FXS and DS can physically interact and participate in common signaling pathways regulating dendritic spine development and local protein synthesis, thus supporting the notion that spine dysmorphogenesis and abnormal local protein synthesis may be molecular underpinnings of intellectual disability. Here we review the molecular constituents regulating local protein synthesis and spine morphology and their alterations in FXS and DS. We argue that these changes might ultimately affect synaptic homeostasis and alter cognitive performance.


Asunto(s)
Síndrome de Down/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Musculares/genética , Animales , Proteínas de Unión al ADN , Espinas Dendríticas/patología , Síndrome de Down/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Musculares/metabolismo
14.
Front Cell Neurosci ; 7: 148, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-24058334

RESUMEN

Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca(2) (+) plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

15.
Neurobiol Dis ; 56: 1-5, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23578490

RESUMEN

Fragile X Syndrome (FXS) is a heritable form of mental retardation caused by a non-coding trinucleotide expansion of the FMR1 gene leading to loss of expression of this RNA binding protein. Mutations in this gene are strongly linked to enhanced Group I metabotropic glutamate receptor (mGluR) signaling. A recent report found that mGluR5-dependent endogenous cannabinoid signaling is enhanced in hippocampal slices from fmr1 knockout mice, suggesting a link between FXS and cannabinoid signaling. Alterations in cannabinoid signaling have an impact on learning and memory and may therefore be linked to some aspects of the FXS phenotype. We have used autaptic hippocampal neurons cultured from fmr1 knockout mice to further explore the interaction between endocannabinoid signaling and FMRP. These neurons express several robust forms of retrograde endocannabinoid signaling including depolarization induced suppression of excitation (DSE) and a metabotropic form (MSE) that results from Group I mGluR activation. We now report that young fmr1 neurons exhibit considerably enhanced DSE, likely via increased production of 2-AG, rather than enhanced mGluR-MSE. We find that depolarizations as brief as 50ms, which do not ordinarily produce DSE, routinely inhibited glutamate release. Furthermore, as neuronal cultures mature, CB1-receptor signaling strongly desensitizes. Our results suggest that loss of FMRP broadly affects the endocannabinoid signaling system, possibly through local 2-AG over production. Furthermore, the net effect of the loss of FMRP may actually be diminished cannabinoid signaling due to receptor desensitization as an adaptation to 2-AG overproduction.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Hipocampo/fisiopatología , Neuronas/fisiología , Receptor Cannabinoide CB1/fisiología , Sinapsis/fisiología , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Baclofeno/farmacología , Interpretación Estadística de Datos , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/fisiopatología , Agonistas del GABA/farmacología , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Noqueados , Receptor Cannabinoide CB1/genética , Receptores de Glutamato Metabotrópico/biosíntesis , Receptores de Glutamato Metabotrópico/genética
16.
EMBO J ; 31(18): 3655-66, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22863780

RESUMEN

Most common genetic factors known to cause intellectual disability are Down syndrome and Fragile X syndrome. However, the underlying cellular and molecular mechanisms of intellectual disability remain unclear. Recently, dendritic spine dysmorphogenesis and impaired local protein synthesis are posited to contribute to the cellular mechanisms of intellectual disability. Here, we show that Down syndrome critical region1 (DSCR1) interacts with Fragile X mental retardation protein (FMRP) and regulates both dendritic spine morphogenesis and local protein synthesis. Interestingly, decreasing the level of FMRP restores the DSCR1-induced changes in dendritic spine morphology. Our results imply that DSCR1 is a novel regulator of FMRP and that Fragile X syndrome and Down syndrome may share disturbances in common pathways that regulate dendritic spine morphology and local protein synthesis.


Asunto(s)
Espinas Dendríticas/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Musculares/fisiología , Animales , Región CA1 Hipocampal , Proteínas de Unión al Calcio , Proteínas de Unión al ADN , Síndrome de Down/genética , Síndrome de Down/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/métodos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Proteínas Musculares/metabolismo , Neuronas/metabolismo , Fosforilación , ARN Interferente Pequeño/metabolismo
17.
Proc Natl Acad Sci U S A ; 108(37): 15456-61, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21876166

RESUMEN

The proper distribution of mitochondria is particularly vital for neurons because of their polarized structure and high energy demand. Mitochondria in axons constantly move in response to physiological needs, but signals that regulate mitochondrial movement are not well understood. Aside from producing ATP, Ca(2+) buffering is another main function of mitochondria. Activities of many enzymes in mitochondria are also Ca(2+)-dependent, suggesting that intramitochondrial Ca(2+) concentration is important for mitochondrial functions. Here, we report that mitochondrial motility in axons is actively regulated by mitochondrial matrix Ca(2+). Ca(2+) entry through the mitochondrial Ca(2+) uniporter modulates mitochondrial transport, and mitochondrial Ca(2+) content correlates inversely with the speed of mitochondrial movement. Furthermore, the miro1 protein plays a role in Ca(2+) uptake into the mitochondria, which subsequently affects mitochondrial movement.


Asunto(s)
Axones/metabolismo , Señalización del Calcio , Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Canales de Calcio/metabolismo , Motivos EF Hand , Humanos , Ratones , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Movimiento , Mutación/genética
19.
PLoS Genet ; 6(12): e1001240, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21170301

RESUMEN

Fragile X Tremor Ataxia Syndrome (FXTAS) is a common inherited neurodegenerative disorder caused by expansion of a CGG trinucleotide repeat in the 5'UTR of the fragile X syndrome (FXS) gene, FMR1. The expanded CGG repeat is thought to induce toxicity as RNA, and in FXTAS patients mRNA levels for FMR1 are markedly increased. Despite the critical role of FMR1 mRNA in disease pathogenesis, the basis for the increase in FMR1 mRNA expression is unknown. Here we show that overexpressing any of three histone deacetylases (HDACs 3, 6, or 11) suppresses CGG repeat-induced neurodegeneration in a Drosophila model of FXTAS. This suppression results from selective transcriptional repression of the CGG repeat-containing transgene. These findings led us to evaluate the acetylation state of histones at the human FMR1 locus. In patient-derived lymphoblasts and fibroblasts, we determined by chromatin immunoprecipitation that there is increased acetylation of histones at the FMR1 locus in pre-mutation carriers compared to control or FXS derived cell lines. These epigenetic changes correlate with elevated FMR1 mRNA expression in pre-mutation cell lines. Consistent with this finding, histone acetyltransferase (HAT) inhibitors repress FMR1 mRNA expression to control levels in pre-mutation carrier cell lines and extend lifespan in CGG repeat-expressing Drosophila. These findings support a disease model whereby the CGG repeat expansion in FXTAS promotes chromatin remodeling in cis, which in turn increases expression of the toxic FMR1 mRNA. Moreover, these results provide proof of principle that HAT inhibitors or HDAC activators might be used to selectively repress transcription at the FMR1 locus.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Silenciador del Gen , Histona Desacetilasas/metabolismo , Repeticiones de Trinucleótidos , Acetilación , Adulto , Anciano de 80 o más Años , Animales , Regulación hacia Abajo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Inhibidores Enzimáticos/farmacología , Ojo/enzimología , Ojo/inervación , Ojo/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/enzimología , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Desacetilasa 6 , Histona Desacetilasas/genética , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad
20.
Proc Natl Acad Sci U S A ; 106(40): 17117-22, 2009 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-19805187

RESUMEN

At the neuronal level of Down syndrome (DS) brains, there are evidences of altered shape, number, and density of synapses, as well as aberrant endocytosis associated with accumulation of enlarged endosomes, suggesting that proteins involved in synaptic vesicle recycling may play key roles in DS neurons. However, the exact mechanism underlying those anomalies is not well understood. We hypothesize that overexpression of three genes, dap160/itsn1, synj/synj1, and nla/dscr1, located on human chromosome 21 play important roles in DS neurons. Here, we systematically investigate the effects of multiple gene overexpression on synaptic morphology and endocytosis to identify possible dominant gene or genes. We found that overexpression of individual genes lead to abnormal synaptic morphology, but all three genes are necessary to cause impaired vesicle recycling and affect locomotor vigor. Furthermore, we report that dap160 overexpression alters the subcellular distribution of synaptojanin, and overexpression of nla regulates the phosphoinositol 5' phosphatase activity of synaptojanin. These findings imply that restoring the level of any one of these genes may reduce endocytic defects seen in DS.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Terminales Presinápticos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Animales Modificados Genéticamente , Western Blotting , Proteínas de Unión al Calcio , Cromosomas Humanos Par 21/genética , Proteínas de Unión al ADN , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/fisiopatología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Endocitosis , Potenciales Evocados , Potenciales Postsinápticos Excitadores , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Larva/genética , Larva/metabolismo , Larva/fisiología , Modelos Biológicos , Actividad Motora/fisiología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/fisiología , Monoéster Fosfórico Hidrolasas/genética , Terminales Presinápticos/fisiología , Regulación hacia Arriba , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...