Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 274(Pt 2): 133377, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925180

RESUMEN

Indoor formaldehyde pollution can cause inestimable harm to human health and even cancers, thus studies on the removal of formaldehyde attract extensive attentions. In this paper, an environmentally friendly and low-cost biomass material, sodium alginate (SA) was utilized to prepare pyrene functionalized amido-amine-alginic acid (AmAA-Py) by acidification and two-step amidation, which is subsequently self-assembled on reduced graphene oxide (rGO) by π-π stacking interaction, and the final composites were acidified to afford a highly porous composite material for chemical removal of formaldehyde. The formaldehyde chemical removal performance of composite is evaluated at different conditions and find that 1.0 g of acidified alginate derivatives and graphene composites (HCl·AmAA-Py-rGO) can adsorb 69.2 mg of HCHO. Simultaneously, amino groups in amido-amine derivative of acidified sodium alginate (AmAA) can react with acidic pollutants such as H2S and HCl via forming ionic bonding without generating any other by-products, which enables efficient and environment-friendly removal of acidic pollutants. The subtle design of the highly porous composite material utilizing low-cost SA and rGO with large specific surface area opens up a new methodology for fabricating highly porous materials for efficient removal of formaldehyde and other indoor hazardous pollutants.

2.
Langmuir ; 39(30): 10692-10700, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467158

RESUMEN

Indoor gaseous formaldehyde is the main environmental pollutant that can cause fatal threats to human health. A number of physical and chemical methods have been developed to tackle this issue. However, the existing methods are still unsatisfactory to meet the requirement of sustainable development owing to the flaws of low efficiency and reversible or second pollution. Herein, a chemical method based on a nucleophilic reaction between hydrazine and aldehyde that generates the only by-product of H2O is designed for the removal of formaldehyde. 1-Pyrenebutyric hydrazide was synthesized by a simple esterification reaction and then self-assembled on reduced graphene oxide (rGO) with a large surface area by forming π-π stacking to obtain a composite for chemical removal of gaseous formaldehyde under ambient conditions. In a practical test, the formaldehyde removal rate could reach 91% of the theoretical value, which meets the requirement for commercial formaldehyde removal applications. After 10 times recycling, the formaldehyde removal rate still remains as high as 85%. Moreover, the composite could be regenerated in weak acidic media, which greatly reduce the manufacturing cost in practical applications.

3.
J Hazard Mater ; 438: 129457, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779400

RESUMEN

Formaldehyde is deemed to be an indispensable industrial product that has been widely applied in manufacture of resins, drugs, building materials, etc. It has been widely accepted that, nevertheless, residual formaldehyde will cause pathogen reactions, even leading to cancers like leukemia. Thus, a facile and efficient approach has been designed to achieve the determination of formaldehyde by ultraviolet and visible (UV-vis) spectrophotometry in liquid media. In detail, O-(carboxymethyl) hydroxylamine (C2H5NO3·0.5HCl) is chosen as the detection reagent for the specific recognition of formaldehyde on account of its unique aminooxy (-O-NH2) which can react with formaldehyde to form oxime bonds (O-NCH2), accompanied with the only by-product of H2O. Likewise, this simple and sensitive detection approach based on the chemical detection reagent C2H5NO3·0.5HCl can also be applied to the determination of other aldehyde homologs with carbonyl groups including acetaldehyde, acetone, benzaldehyde, 1, 4-phthalaldehyde. As a result, all the UV absorbances of analytes display remarkable linear detection relationships. The limits of detection (LOD) and limits of quantitation (LOQ) values are in the range of 0.03-1.16 ppm and 0.03-5.81 ppm respectively, with RSDs of 3.27-3.75 %, evidencing the feasibility of our method to determine formaldehyde and its homologs by UV-vis spectrophotometry and auspicious prospects of practical applications.


Asunto(s)
Acetaldehído , Formaldehído , Acetona , Aldehídos , Formaldehído/química , Espectrofotometría/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...