RESUMEN
Magnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FemXn (X = Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMn6Sn6 (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While partially filling a kagome flat band is predicted to give rise to a Stoner-type ferromagnetism, experimental visualization of the magnetic splitting across the ordering temperature has not been reported for any of these systems due to the high ordering temperatures, hence leaving the nature of magnetism in kagome magnets an open question. Here, we probe the electronic structure with angle-resolved photoemission spectroscopy in a kagome magnet thin film FeSn synthesized using molecular beam epitaxy. We identify the exchange-split kagome flat bands, whose splitting persists above the magnetic ordering temperature, indicative of a local moment picture. Such local moments in the presence of the topological flat band are consistent with the compact molecular orbitals predicted in theory. We further observe a large spin-orbital selective band renormalization in the Fe d x y + d x 2 - y 2 spin majority channel reminiscent of the orbital selective correlation effects in the iron-based superconductors. Our discovery of the coexistence of local moments with topological flat bands in a kagome system echoes similar findings in magic-angle twisted bilayer graphene, and provides a basis for theoretical effort towards modeling correlation effects in magnetic flat band systems.
RESUMEN
Owing to their exceptional mechanical, electronic, and phononic transport properties, compositionally complex alloys, including high-entropy alloys, represent an important class of materials. However, the interplay between chemical disorder and electronic correlations, and its influence on electronic structure-derived properties, remains largely unexplored. This is addressed for the archetypal CrMnFeCoNi alloy using resonant and valence band photoemission spectroscopy, electrical resistivity, and optical conductivity measurements, complemented by linear response calculations based on density functional theory. Utilizing dynamical mean-field theory, correlation signatures and damping in the spectra are identified, highlighting the significance of many-body effects, particularly in states distant from the Fermi edge. Electronic transport remains dominated by disorder and potentially short-range order, especially at low temperatures, while visible-spectrum optical conductivity and high-temperature transport are influenced by short quasiparticle lifetimes. These findings improve our understanding of element-specific electronic correlations in compositionally complex alloys and facilitate the development of advanced materials with tailored electronic properties.
RESUMEN
Transition metal (TM) sulfides belong to the class of 2D materials with a wide application range. Various methods, including solvothermal, hydrothermal, chemical vapor deposition, and quartz ampoule-based approaches, have been employed for the synthesis of TM sulfides. Some of them face limitations due to the low stability of TM sulfides and their susceptibility to oxidation, and others require more sophisticated equipment or complex and rare precursors or are not scalable. In this work, we propose an alternative approach for the synthesis of 2D TM sulfides by sulfurization of corresponding metal oxides in the vapor of CS2 at elevated temperature. Subsequent treatment in liquid nitrogen allows exfoliation of created sulfides to a 2D structure. A proposed approach was successfully applied to nine transition metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. The resulting materials were extensively characterized using various analytical techniques with a focus on their crystalline structure and 2D nature. Our approach offers several advantages including the use of simple precursors (CS2 and metal oxides), universality (in all cases, the sulfides were obtained), equipment simplicity (tube furnace and quartz reactor), short preparation time (3 h), and the ability of morphology and phase tuning (in particular cases) of the created materials by adjusting the temperature. In addition, gram-scale bulk materials can be obtained in the entry-level laboratories using the proposed approach.
RESUMEN
Altermagnetic (AM) materials exhibit non-relativistic, momentum-dependent spin-split states, ushering in new opportunities for spin electronic devices. While the characteristics of spin-splitting are documented within the framework of the non-relativistic spin group symmetry, there is limited exploration of the inclusion of relativistic symmetry and its impact on the emergence of a novel spin-splitting in the band structure. This study delves into the intricate relativistic electronic structure of an AM material, α-MnTe. Employing temperature-dependent angle-resolved photoelectron spectroscopy across the AM phase transition, the emergence of a relativistic valence band splitting concurrent with the establishment of magnetic order is elucidated. This discovery is validated through disordered local moment calculations, modeling the influence of magnetic order on the electronic structure and confirming the magnetic origin of the observed splitting. The temperature-dependent splitting is ascribed to the advent of relativistic spin-splitting resulting from the strengthening of AM order in α-MnTe as the temperature decreases. This sheds light on a previously unexplored facet of this intriguing material.
RESUMEN
Altermagnets are an emerging elementary class of collinear magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of time-reversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism but has not been experimentally visualized to date. We directly observe strong time-reversal symmetry breaking in the band structure of altermagnetic RuO2 by detecting magnetic circular dichroism in angle-resolved photoemission spectra. Our experimental results, supported by ab initio calculations, establish the microscopic electronic structure basis for a family of interesting phenomena and functionalities in fields ranging from topological matter to spintronics, which are based on the unconventional time-reversal symmetry breaking in altermagnets.
RESUMEN
The ferroelectric semiconductor α-SnTe has been regarded as a topological crystalline insulator, and the dispersion of its surface states has been intensively measured with angle-resolved photoemission spectroscopy (ARPES) over the past decade. However, much less attention has been given to the impact of the ferroelectric transition on its electronic structure, and in particular on its bulk states. Here, we investigate the low-energy electronic structure of α-SnTe with ARPES and follow the evolution of the bulk-state Rashba splitting as a function of temperature, across its ferroelectric critical temperature of about Tc ≈ 110 K. Unexpectedly, we observe a persistent band splitting up to room temperature, which is consistent with an order-disorder contribution of local dipoles to the phase transition that requires the presence of fluctuating dipoles above Tc. We conclude that no topological surface state can occur under these conditions at the (111) surface of SnTe, at odds with recent literature.
RESUMEN
In this work, we report a novel multimetallic nanoparticle catalyst composed of Pt, Pd, and Pb and its electrochemical activity toward dimethyl ether (DME) oxidation in liquid electrolyte and polymer electrolyte fuel cells. Chemical dealloying of the catalyst with the lowest platinum-group metal (PGM) content, Pt2PdPb2/C, was conducted using HNO3 to tune the catalyst activity. Comprehensive characterization of the chemical-dealloying-derived catalyst nanoparticles unambiguously showed that the acid treatment removed 50% Pb from the nanoparticles with an insignificant effect on the PGM metals and led to the formation of smaller-sized nanoparticles. Electrochemical studies showed that Pb dissolution led to structural changes in the original catalysts. Chemical-dealloying-derived catalyst nanoparticles made of multiple phases (Pt, Pt3Pb, PtPb) provided one of the highest PGM-normalized power densities of 118 mW mgPGM-1 in a single direct DME fuel cell operated at low anode catalyst loading (1 mgPGM cm-2) at 70 °C. A possible DME oxidation pathway for these multimetallic catalysts was proposed based on an online mass spectrometry study and the analysis of the reaction products.
RESUMEN
The interplay between spin-orbit interaction and magnetic order is one of the most active research fields in condensed matter physics and drives the search for materials with novel, and tunable, magnetic and spin properties. Here we report on a variety of unique and unexpected observations in thin multiferroic Ge1-xMnxTe films. The ferrimagnetic order parameter in this ferroelectric semiconductor is found to switch direction under magnetostochastic resonance with current pulses many orders of magnitude lower as for typical spin-orbit torque systems. Upon a switching event, the magnetic order spreads coherently and collectively over macroscopic distances through a correlated spin-glass state. Utilizing these observations, we apply a novel methodology to controllably harness this stochastic magnetization dynamics.
RESUMEN
Fermi surfaces of transition metals, which describe all thermodynamical and transport quantities of solids, often fail to be modeled by one-electron mean-field theory due to strong correlations among the valence electrons. In addition, relativistic spin-orbit coupling pronounced in heavier elements lifts the degeneracy of the energy bands and further modifies the Fermi surface. Palladium and rhodium, two 4d metals attributed to show significant spin-orbit coupling and electron correlations, are ideal for a systematic and fundamental study of the two fundamental physical phenomena and their interplay in the electronic structure. In this study, we explored the Fermi surface of the 4d noble metals palladium and rhodium obtained via high-resolution constant initial state momentum microscopy. The complete 3D-Fermi surfaces of palladium and rhodium were tomographically mapped using soft X-ray photon energies from 34 eV up to 660 eV. To fully capture the orbital angular momentum of states across the Fermi surface, the Fermi surface tomography was performed using p- and s- polarized light. Applicability and limitations of the nearly-free electron final state model in photoemission are discussed using a complex band structure model supported by experimental evidence. The significance of spin-orbit coupling and electron correlations across the Fermi surfaces will be discussed within the context of the photoemission results. State-of-the-art fully relativistic Korringa-Kohn-Rostoker (KKR) calculations within the one-step model of photoemission are used to support the experimental results.
RESUMEN
We performed spin-, time- and angle-resolved extreme ultraviolet photoemission spectroscopy of excitons prepared by photoexcitation of inversion-symmetric 2H-WSe_{2} with circularly polarized light. The very short probing depth of XUV photoemission permits selective measurement of photoelectrons originating from the top-most WSe_{2} layer, allowing for direct measurement of hidden spin polarization of bright and momentum-forbidden dark excitons. Our results reveal efficient chiroptical control of bright excitons' hidden spin polarization. Following optical photoexcitation, intervalley scattering between nonequivalent K-K^{'} valleys leads to a decay of bright excitons' hidden spin polarization. Conversely, the ultrafast formation of momentum-forbidden dark excitons acts as a local spin polarization reservoir, which could be used for spin injection in van der Waals heterostructures involving multilayer transition metal dichalcogenides.
RESUMEN
We demonstrate that an important quantum material WTe_{2} exhibits a new type of geometry-induced spin filtering effect in photoemission, stemming from low symmetry that is responsible for its exotic transport properties. Through the laser-driven spin-polarized angle-resolved photoemission Fermi surface mapping, we showcase highly asymmetric spin textures of electrons photoemitted from the surface states of WTe_{2}. Such asymmetries are not present in the initial state spin textures, which are bound by the time-reversal and crystal lattice mirror plane symmetries. The findings are reproduced qualitatively by theoretical modeling within the one-step model photoemission formalism. The effect could be understood within the free-electron final state model as an interference due to emission from different atomic sites. The observed effect is a manifestation of time-reversal symmetry breaking of the initial state in the photoemission process, and as such it cannot be eliminated, but only its magnitude influenced, by special experimental geometries.
RESUMEN
The two new ternary amalgams K1-xRbxHg11 [x = 0.472(7)] and Cs3-xCaxHg20 [x = 0.20(3)] represent two different examples of how to create ternary compounds from binaries by statistical atom substitution. K1-xRbxHg11 is a Vegard-type mixed crystal of the isostructural binaries KHg11 and RbHg11 [cubic, BaHg11 structure type, space group Pm3Ì m, a = 9.69143(3) Å, Rietveld refinement], whereas Cs3-xCaxHg20 is a substitution variant of the Rb3Hg20 structure type [cubic, space group Pm3Ì n, a = 10.89553(14) Å, Rietveld refinement] for which a fully substituted isostructural binary Ca phase is unknown. In K1-xRbxHg11, the valence electron concentration (VEC) is not changed by the substitution, whereas in Cs3-xCaxHg20, the VEC increases with the Ca content. Amalgams of electropositive metals form polar metal bonds and show "bad metal" properties. By thermal analysis, magnetic susceptibility and resistivity measurements, and density functional theory calculations of the electronic structures, we investigate the effect of the structural disorder introduced by creating mixed-atom occupation on the physical properties of the two new polar amalgam systems.
RESUMEN
Rashba materials have appeared as an ideal playground for spin-to-charge conversion in prototype spintronics devices. Among them, α-GeTe(111) is a non-centrosymmetric ferroelectric semiconductor for which a strong spin-orbit interaction gives rise to giant Rashba coupling. Its room temperature ferroelectricity was recently demonstrated as a route towards a new type of highly energy-efficient non-volatile memory device based on switchable polarization. Currently based on the application of an electric field, the writing and reading processes could be outperformed by the use of femtosecond light pulses requiring exploration of the possible control of ferroelectricity on this timescale. Here, we probe the room temperature transient dynamics of the electronic band structure of α-GeTe(111) using time and angle-resolved photoemission spectroscopy. Our experiments reveal an ultrafast modulation of the Rashba coupling mediated on the fs timescale by a surface photovoltage, namely an increase corresponding to a 13% enhancement of the lattice distortion. This opens the route for the control of the ferroelectric polarization in α-GeTe(111) and ferroelectric semiconducting materials in quantum heterostructures.
RESUMEN
Light elements in Earth's core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron-electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of â¼100 to 110 Wâ m-1â K-1 for liquid Fe-9Si near the topmost outer core. If Earth's core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core-mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core-mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core.
RESUMEN
Herein, we studied the novel and emerging group of 2D materials namely MXene along with its nanocomposites. This work entails detailed experimental as well as computational study of the electrochemical behavior of vanadium carbide (V2CTx) MXene and MnO2-V2C nanocomposite with varying percentages of MnO2. A specific capacitance of 551.8 F/g was achieved for MnO2-V2C nanocomposite in 1 M KOH electrolyte solution, which is more than two times higher than the gravimetric capacitance of 196.5 F/g obtained for V2C. The cyclic stability achieved for the MnO2-V2C nanocomposite resulted in a retentivity of 96.5% until 5000 cycles. The c-lattice parameter achieved for MXene is 22.6 Å, which was 13.01 Å for MAX phase. The nanocomposite resulted in a c-lattice parameter of 27.2 Å, which showed that the spatial distance between the MXene layers was efficiently obtained. The method of wet etching was used for the preparation of pristine MXene and the liquid phase precipitation method was opted for the synthesis of the MnO2-V2C nanocomposite. Density functional theory calculation was exercised so as to complement the experimental results and to understand the microscopic details, such as structure stability and electronic structure. The current report presents a comprehensive experimental and computational study on 2D MXenes for future energy storage applications.
RESUMEN
Ferroelectric α-GeTe is unveiled to exhibit an intriguing multiple nontrivial topology of the electronic band structure due to the existence of triple-point and type-II Weyl fermions, which goes well beyond the giant Rashba spin splitting controlled by external fields as previously reported. Using spin- and angle-resolved photoemission spectroscopy combined with ab initio density functional theory, the unique spin texture around the triple point caused by the crossing of one spin-degenerate and two spin-split bands along the ferroelectric crystal axis is derived. This consistently reveals spin winding numbers that are coupled with time-reversal symmetry and Lorentz invariance, which are found to be equal for both triple-point pairs in the Brillouin zone. The rich manifold of effects opens up promising perspectives for studying nontrivial phenomena and multicomponent fermions in condensed matter systems.
RESUMEN
First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, essentially from the compiler up, possibly with the exception of linear-algebra and message-passing libraries. This model has endured and been quite successful for decades. The successful evolution of the electronic structure methodology itself, however, has resulted in an increasing complexity and an ever longer list of features expected within all software packages, which implies a growing amount of replication between different packages, not only in the initial coding but, more importantly, every time a code needs to be re-engineered to adapt to the evolution of computer hardware architecture. The Electronic Structure Library (ESL) was initiated by CECAM (the European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure codes and redesign them as open-source libraries available to everybody. Such libraries include "heavy-duty" ones that have the potential for a high degree of parallelization and adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by, e.g., physicists and chemists when implementing new ideas. We envisage that this modular paradigm will improve overall coding efficiency and enable specialists (whether they be computer scientists or computational scientists) to use their skills more effectively and will lead to a more dynamic evolution of software in the community as well as lower barriers to entry for new developers. The model comes with new challenges, though. The building and compilation of a code based on many interdependent libraries (and their versions) is a much more complex task than that of a code delivered in a single self-contained package. Here, we describe the state of the ESL, the different libraries it now contains, the short- and mid-term plans for further libraries, and the way the new challenges are faced. The ESL is a community initiative into which several pre-existing codes and their developers have contributed with their software and efforts, from which several codes are already benefiting, and which remains open to the community.
RESUMEN
The arrangement of B atoms in a doped Si(1 1 1)-[Formula: see text]:B system was studied using a near-edge x-ray absorption fine structure (NEXAFS). Boron atoms were deposited via segregation from the bulk by flashing the sample repeatedly. The positions of B atoms are determined by comparing measured polarized (angle-dependent) NEXAFS spectra with spectra calculated for various structural models based on ab initio total energy calculations. It is found that most of boron atoms are located in sub-surface L[Formula: see text] positions, beneath a Si atom. However, depending on the preparation method a significant portion of B atoms may be located elsewhere. A possible location of these non-L[Formula: see text]-atoms is at the surface, next to those Si atoms which form the [Formula: see text] reconstruction.
RESUMEN
Artificial complex-oxide heterostructures containing ultrathin buried layers grown along the pseudocubic [111] direction have been predicted to host a plethora of exotic quantum states arising from the graphene-like lattice geometry and the interplay between strong electronic correlations and band topology. To date, however, electronic-structural investigations of such atomic layers remain an immense challenge due to the shortcomings of conventional surface-sensitive probes with typical information depths of a few angstroms. Here, we use a combination of bulk-sensitive soft X-ray angle-resolved photoelectron spectroscopy (SX-ARPES), hard X-ray photoelectron spectroscopy (HAXPES), and state-of-the-art first-principles calculations to demonstrate a direct and robust method for extracting momentum-resolved and angle-integrated valence-band electronic structure of an ultrathin buckled graphene-like layer of NdNiO3 confined between two 4-unit cell-thick layers of insulating LaAlO3. The momentum-resolved dispersion of the buried Ni d states near the Fermi level obtained via SX-ARPES is in excellent agreement with the first-principles calculations and establishes the realization of an antiferro-orbital order in this artificial lattice. The HAXPES measurements reveal the presence of a valence-band bandgap of 265 meV. Our findings open a promising avenue for designing and investigating quantum states of matter with exotic order and topology in a few buried layers.
RESUMEN
Grimm-Sommerfeld analogous II-IV-N2 nitrides such as ZnSiN2 , ZnGeN2 , and MgGeN2 are promising semiconductor materials for substitution of commonly used (Al,Ga,In)N. Herein, the ammonothermal synthesis of solid solutions of II-IV-N2 compounds (II=Mg, Mn, Zn; IV=Si, Ge) having the general formula (IIa 1-x IIb x )-IV-N2 with x≈0.5 and ab initio DFT calculations of their electronic and optical properties are presented. The ammonothermal reactions were conducted in custom-built, high-temperature, high-pressure autoclaves by using the corresponding elements as starting materials. NaNH2 and KNH2 act as ammonobasic mineralizers that increase the solubility of the reactants in supercritical ammonia. Temperatures between 870 and 1070â K and pressures up to 200â MPa were chosen as reaction conditions. All solid solutions crystallize in wurtzite-type superstructures with space group Pna21 (no. 33), confirmed by powder XRD. The chemical compositions were analyzed by energy-dispersive X-ray spectroscopy. Diffuse reflectance spectroscopy was used for estimation of optical bandgaps of all compounds, which ranged from 2.6 to 3.5â eV (Ge compounds) and from 3.6 to 4.4â eV (Si compounds), and thus demonstrated bandgap tunability between the respective boundary phases. Experimental findings were corroborated by DFT calculations of the electronic structure of pseudorelaxed mixed-occupancy structures by using the KKR+CPA approach.