Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1237594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600951

RESUMEN

Toxoplasma gondii is a widespread single-celled intracellular eukaryotic apicomplexan protozoan parasite primarily associated with mammalian foetal impairment and miscarriage, including in humans. Is estimated that approximately one third of the human population worldwide is infected by this parasite. Here we used cutting-edge, label-free 3D quantitative optical diffraction holotomography to capture and evaluate the Toxoplasma lytic cycle (invasion, proliferation and egress) in real-time based on the refractive index distribution. In addition, we used this technology to analyse an engineered CRISPR-Cas9 Toxoplasma mutant to reveal differences in cellular physical properties when compared to the parental line. Collectively, these data support the use of holotomography as a powerful tool for the study of protozoan parasites and their interactions with their host cells.


Asunto(s)
Toxoplasma , Humanos , Animales , Toxoplasma/genética , Eliminación de Gen , Eucariontes , Células Eucariotas , Feto , Mamíferos
2.
Insect Biochem Mol Biol ; 156: 103934, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990247

RESUMEN

The tobacco whitefly, Bemisia tabaci, is a polyphagous crop pest which causes high levels of economic damage across the globe. Insecticides are often required for the effective control of this species, among which the neonicotinoid class have been particularly widely used. Deciphering the mechanisms responsible for resistance to these chemicals is therefore critical to maintain control of B. tabaci and limit the damage it causes. An important mechanism of resistance to neonicotinoids in B. tabaci is the overexpression of the cytochrome P450 gene CYP6CM1 which leads to the enhanced detoxification of several neonicotinoids. In this study we show that qualitative changes in this P450 dramatically alter its metabolic capacity to detoxify neonicotinoids. CYP6CM1 was significantly over-expressed in two strains of B. tabaci which displayed differing levels of resistance to the neonicotinoids imidacloprid and thiamethoxam. Sequencing of the CYP6CM1 coding sequence from these strains revealed four different alleles encoding isoforms carrying several amino acid changes. Expression of these alleles in vitro and in vivo provided compelling evidence that a mutation (A387G), present in two of the CYP6CM1 alleles, results in enhanced resistance to several neonicotinoids. These data demonstrate the importance of both qualitative and quantitative changes in genes encoding detoxification enzymes in the evolution of insecticide resistance and have applied implications for resistance monitoring programs.


Asunto(s)
Hemípteros , Insecticidas , Animales , Mutación Puntual , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Resistencia a los Insecticidas/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hemípteros/genética , Hemípteros/metabolismo
3.
Cells ; 11(5)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269433

RESUMEN

Toxoplasma gondii (T. gondii) is an opportunistic protozoan that can cause brain infection and other serious health consequences in immuno-compromised individuals. This parasite has a remarkable ability to cross biological barriers and exploit the host cell microenvironment to support its own survival and growth. Recent advances in label-free spectroscopic imaging techniques have made it possible to study biological systems at a high spatial resolution. In this study, we used conventional Fourier-transform infrared (FTIR) microspectroscopy and synchrotron-based FTIR microspectroscopy to analyze the chemical changes that are associated with infection of human brain microvascular endothelial cells (hBMECs) by T. gondii (RH) tachyzoites. Both FTIR microspectroscopic methods showed utility in revealing the chemical alterations in the infected hBMECs. Using a ZnS hemisphere device, to increase the numerical aperture, and the synchrotron source to increase the brightness, we obtained spatially resolved spectra from within a single cell. The spectra extracted from the nucleus and cytosol containing the tachyzoites were clearly distinguished. RNA sequencing analysis of T. gondii-infected and uninfected hBMECs revealed significant changes in the expression of host cell genes and pathways in response to T. gondii infection. These FTIR spectroscopic and transcriptomic findings provide significant insight into the molecular changes that occur in hBMECs during T. gondii infection.


Asunto(s)
Toxoplasma , Toxoplasmosis , Células Endoteliales , Interacciones Huésped-Parásitos , Humanos , Transcriptoma
4.
ACS Infect Dis ; 7(1): 47-63, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33291887

RESUMEN

Current chemotherapeutics for leishmaniasis have multiple deficiencies, and there is a need for new safe, efficacious, and affordable medicines. This study describes a successful drug repurposing approach that identifies the over-the-counter antihistamine, clemastine fumarate, as a potential antileishmanial drug candidate. The screening for inhibitors of the sphingolipid synthase (inositol phosphorylceramide synthase, IPCS) afforded, following secondary screening against Leishmania major (Lmj) promastigotes, 16 active compounds. Further refinement through the dose response against LmjIPCS and intramacrophage L. major amastigotes identified clemastine fumarate with good activity and selectivity with respect to the host macrophage. On target engagement was supported by diminished sensitivity in a sphingolipid-deficient L. major mutant (ΔLmjLCB2) and altered phospholipid and sphingolipid profiles upon treatment with clemastine fumarate. The drug also induced an enhanced host cell response to infection indicative of polypharmacology. The activity was sustained across a panel of Old and New World Leishmania species, displaying an in vivo activity equivalent to the currently used drug, glucantime, in a mouse model of L. amazonensis infection. Overall, these data validate IPCS as an antileishmanial drug target and indicate that clemastine fumarate is a candidate for repurposing for the treatment of leishmaniasis.


Asunto(s)
Antiprotozoarios , Leishmaniasis , Preparaciones Farmacéuticas , Animales , Antiprotozoarios/farmacología , Clemastina/uso terapéutico , Inositol , Leishmaniasis/tratamiento farmacológico , Ratones
5.
Nat Commun ; 10(1): 1832, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015432

RESUMEN

Ceramides draw wide attention as tumor suppressor lipids that act directly on mitochondria to trigger apoptotic cell death. However, molecular details of the underlying mechanism are largely unknown. Using a photoactivatable ceramide probe, we here identify the voltage-dependent anion channels VDAC1 and VDAC2 as mitochondrial ceramide binding proteins. Coarse-grain molecular dynamics simulations reveal that both channels harbor a ceramide binding site on one side of the barrel wall. This site includes a membrane-buried glutamate that mediates direct contact with the ceramide head group. Substitution or chemical modification of this residue abolishes photolabeling of both channels with the ceramide probe. Unlike VDAC1 removal, loss of VDAC2 or replacing its membrane-facing glutamate with glutamine renders human colon cancer cells largely resistant to ceramide-induced apoptosis. Collectively, our data support a role of VDAC2 as direct effector of ceramide-mediated cell death, providing a molecular framework for how ceramides exert their anti-neoplastic activity.


Asunto(s)
Apoptosis , Ceramidas/metabolismo , Mitocondrias/fisiología , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Sitios de Unión/genética , Ceramidas/química , Técnicas de Inactivación de Genes , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Simulación de Dinámica Molecular , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/aislamiento & purificación , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/química , Canal Aniónico 2 Dependiente del Voltaje/genética , Canal Aniónico 2 Dependiente del Voltaje/aislamiento & purificación
6.
Int J Parasitol Drugs Drug Resist ; 8(3): 475-487, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30399513

RESUMEN

Previous work from our group showed that tamoxifen, an oral drug that has been in use for the treatment of breast cancer for over 40 years, is active both in vitro and in vivo against several species of Leishmania, the etiological agent of leishmaniasis. Using a combination of metabolic labeling with [3H]-sphingosine and myo-[3H]-inositol, alkaline hydrolysis, HPTLC fractionations and mass spectrometry analyses, we observed a perturbation in the metabolism of inositolphosphorylceramides (IPCs) and phosphatidylinositols (PIs) after treatment of L. amazonensis promastigotes with tamoxifen, with a significant reduction in the biosynthesis of the major IPCs (composed of d16:1/18:0-IPC, t16:0/C18:0-IPC, d18:1/18:0-IPC and t16:0/20:0-IPC) and PIs (sn-1-O-(C18:0)alkyl -2-O-(C18:1)acylglycerol-3-HPO4-inositol and sn-1-O-(C18:0)acyl-2-O-(C18:1)acylglycerol-3-HPO4-inositol) species. Substrate saturation kinetics of myo-inositol uptake analyses indicated that inhibition of inositol transport or availability were not the main reasons for the reduced biosynthesis of IPC and PI observed in tamoxifen treated parasites. An in vitro enzymatic assay was used to show that tamoxifen was able to inhibit the Leishmania IPC synthase with an IC50 value of 8.48 µM (95% CI 7.68-9.37), suggesting that this enzyme is most likely one of the targets for this compound in the parasites.


Asunto(s)
Vías Biosintéticas/efectos de los fármacos , Glicoesfingolípidos/biosíntesis , Leishmania/efectos de los fármacos , Tamoxifeno/farmacología , Glicoesfingolípidos/metabolismo , Hexosiltransferasas/efectos de los fármacos , Hexosiltransferasas/metabolismo , Concentración 50 Inhibidora , Inositol/metabolismo , Leishmania/fisiología , Leishmania mexicana/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Fosfatidilinositoles/metabolismo
7.
J Lipid Res ; 59(3): 515-530, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29343537

RESUMEN

Ceramides are central intermediates of sphingolipid metabolism with dual roles as mediators of cellular stress signaling and mitochondrial apoptosis. How ceramides exert their cytotoxic effects is unclear and their poor solubility in water hampers a search for specific protein interaction partners. Here, we report the application of a photoactivatable and clickable ceramide analog, pacCer, to identify ceramide binding proteins and unravel the structural basis by which these proteins recognize ceramide. Besides capturing ceramide transfer protein (CERT) from a complex proteome, our approach yielded CERT-related steroidogenic acute regulatory protein D7 (StarD7) as novel ceramide binding protein. Previous work revealed that StarD7 is required for efficient mitochondrial import of phosphatidylcholine (PC) and serves a critical role in mitochondrial function and morphology. Combining site-directed mutagenesis and photoaffinity labeling experiments, we demonstrate that the steroidogenic acute regulatory transfer domain of StarD7 harbors a common binding site for PC and ceramide. While StarD7 lacks robust ceramide transfer activity in vitro, we find that its ability to shuttle PC between model membranes is specifically affected by ceramides. Besides demonstrating the suitability of pacCer as a tool to hunt for ceramide binding proteins, our data point at StarD7 as a candidate effector protein by which ceramides may exert part of their mitochondria-mediated cytotoxic effects.


Asunto(s)
Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Lípidos , Proteínas Portadoras/biosíntesis , Células HeLa , Humanos , Mitocondrias/metabolismo
8.
Parasitology ; 145(2): 134-147, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28637533

RESUMEN

Sphingolipids (SLs) are an integral part of all eukaryotic cellular membranes. In addition, they have indispensable functions as signalling molecules controlling a myriad of cellular events. Disruption of either the de novo synthesis or the degradation pathways has been shown to have detrimental effects. The earlier identification of selective inhibitors of fungal SL biosynthesis promised potent broad-spectrum anti-fungal agents, which later encouraged testing some of those agents against protozoan parasites. In this review we focus on the key enzymes of the SL de novo biosynthetic pathway in protozoan parasites of the Apicomplexa and Kinetoplastidae, outlining the divergence and interconnection between host and pathogen metabolism. The druggability of the SL biosynthesis is considered, alongside recent technology advances that will enable the dissection and analyses of this pathway in the parasitic protozoa. The future impact of these advances for the development of new therapeutics for both globally threatening and neglected infectious diseases is potentially profound.


Asunto(s)
Apicomplexa/efectos de los fármacos , Apicomplexa/metabolismo , Kinetoplastida/metabolismo , Redes y Vías Metabólicas , Esfingolípidos/biosíntesis , Animales , Ceramidas/metabolismo , Sistemas de Liberación de Medicamentos , Interacciones Huésped-Parásitos , Humanos , Kinetoplastida/efectos de los fármacos , Parásitos/metabolismo , Esfingolípidos/química , Esfingolípidos/metabolismo
9.
J Lipid Res ; 58(5): 962-973, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28336574

RESUMEN

SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS)1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog, ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, SMS-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate the head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with Glu permitting SMS-catalyzed CPE production and Asp confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.


Asunto(s)
Dominio Catalítico , Mutagénesis Sitio-Dirigida , Esfingolípidos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Humanos , Dominios Proteicos , Especificidad por Sustrato , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
10.
Sci Rep ; 7: 41290, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28120887

RESUMEN

SMSr/SAMD8 is an ER-resident ceramide phosphoethanolamine synthase with a critical role in controlling ER ceramides and suppressing ceramide-induced apoptosis in cultured cells. SMSr-mediated ceramide homeostasis relies on the enzyme's catalytic activity as well as on its N-terminal sterile α-motif or SAM domain. Here we report that SMSr-SAM is structurally and functionally related to the SAM domain of diacylglycerol kinase DGKδ, a central regulator of lipid signaling at the plasma membrane. Native gel electrophoresis indicates that both SAM domains form homotypic oligomers. Chemical crosslinking studies show that SMSr self-associates into ER-resident trimers and hexamers that resemble the helical oligomers formed by DGKδ-SAM. Residues critical for DGKδ-SAM oligomerization are conserved in SMSr-SAM and their substitution causes a dissociation of SMSr oligomers as well as a partial redistribution of the enzyme to the Golgi. Conversely, treatment of cells with curcumin, a drug disrupting ceramide and Ca2+ homeostasis in the ER, stabilizes SMSr oligomers and promotes retention of the enzyme in the ER. Our data provide first demonstration of a multi-pass membrane protein that undergoes homotypic oligomerization via its SAM domain and indicate that SAM-mediated self-assembly of SMSr is required for efficient retention of the enzyme in the ER.

11.
J Lipid Res ; 57(7): 1273-85, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27165857

RESUMEN

SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS) 1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, sphingomyelin synthase-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmatic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with glutamic acid permitting SMS-catalyzed CPE production and aspartic acid confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Ingeniería de Proteínas , Esfingomielinas/biosíntesis , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Membrana Celular/enzimología , Membrana Celular/metabolismo , Sistema Libre de Células , Química Clic , Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Células HeLa , Humanos , Proteínas de la Membrana/química , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/química , Esfingomielinas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...