Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 4(1): 2009-2018, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459452

RESUMEN

By pursuing the strategy of manipulating natural compounds to obtain functional materials, in this work, we report on the synthesis and characterization of a luminescent cationic iridium complex (cis-1), designed starting from the catecholic neurotransmitter dopamine, exhibiting the unusual cis arrangement of the C∧N ligands. Through an integrated experimental and theoretical approach, it was possible to delineate the optoelectronic properties of cis-1. In detail, (a) a series of absorption maxima in the range 300-400 nm was assigned to metal-to-ligand charge transfer and weak and broad absorption maxima at longer wavelengths (400-500 nm) were ascribable to spin-forbidden transitions with a mixed character; (b) there was an intense red phosphorescence with emission set in the range 580-710 nm; and (c) a highest occupied molecular orbital was mainly localized on the metal and the 2-phenylpiridine ligand and a lowest unoccupied molecular orbital was localized on the N∧N ligand, with a ΔH-L set at 2.20 eV. This investigation allowed the design of light-emitting electrochemical cell (LEEC) devices endowed with good performance. The poor literature reporting on the use of cis-iridium(III) complexes in LEECs prompted us to investigate the role played by the selected cathode and the thickness of the emitting layer, as well as the doping effect exerted by ionic liquids on the performance of the devices. All the devices exhibited a deep red emission, in some cases, quite near the pure color (devices #1, #4, and #8), expanding the panorama of the iridium-based red-to-near-infrared LEEC devices. The characteristics of the devices, such as the brightness reaching values of 162 cd/m2 for device #7, suggested that the performances of cis-1 are comparable to those of trans isomers, opening new perspective toward designing a new set of luminescent materials for optoelectronic devices.

2.
Materials (Basel) ; 12(14)2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373302

RESUMEN

Zinc oxide nanoparticles (ZnONPs) and stearic acid are herein used for the preparation of hydrophobic coatings with good moisture barrier property on flexible plastic substrates. Fast, high throughput, mild and easy-to-run processing techniques, like airbrushing and gravure printing, are applied for thin films deposition of these materials. The results of this study indicated that the best hydrophobic coating in terms of water contact angle (115°) is obtained through a two-steps printing deposition of a ZnONPs layer followed by a stearic acid layer. All the deposition procedures proved to be effective in terms of water vapor barrier properties, reaching values of 0.89 g/m2/day, with a 45% reduction with respect to the bare substrate. These preliminary data are very encouraging in the perspective of a low cost and green approach for the realization of functional coatings for packaging applications.

3.
Front Chem ; 7: 162, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972328

RESUMEN

Melanin denotes a variety of mammalian pigments, including the dark electrically conductive eumelanin and the reddish, sulfur-containing, pheomelanin. Organic (bio)electronics is showing increasing interests in eumelanin exploitation, e.g., for bio-interfaces, but the low conductivity of the material is limiting the development of eumelanin-based devices. Here, for the first time, we report an abrupt increase of the eumelanin electrical conductivity, revealing the highest value presented to date of 318 S/cm. This result, obtained via simple thermal annealing in vacuum of the material, designed on the base of the knowledge of the eumelanin chemical properties, also discloses the actual electronic nature of this material's conduction.

4.
Langmuir ; 32(41): 10497-10504, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27642772

RESUMEN

We demonstrated the suitability of polymer composites filled with silicon carbide (SiC) powders derived from a recycling process for applications in electronic devices manufacturing. SiC powders have been synthesized from the process byproducts and used as fillers in the formulation of polystyrene (PS)/SiC composites, which have been used in the preparation of substrates using the solution-casting technique. Different substrates have been prepared by changing the concentration of SiC in the composite in the range from 6.7 to 67 wt % and used in simple electronic devices by performing gold contacts in both planar and stacked configurations. The electrical behaviors of both stacked and planar devices were investigated in direct current (DC) and alternate current (AC) regimes. The experimental results showed that charge percolation could be considered an explanation for the abrupt change in the differential conductivity observed around 30 wt %. Fowler-Nordheim tunneling at high fields has been found to be compatible with static characteristics and with high-frequency AC measurements and, therefore, charge tunneling between SiC islands has been proposed as the physical mechanism provoking the changes in charge transport in the substrates investigated. From this first experimental analysis, it appears that SiC/PS composites could suit their use in tunneling-gate dielectrics (i.e., in transistors suitable for their applications in nonvolatile random-access memory) for low concentrations or as a continuous semiconducting media when SiC is dispersed in high-concentration composites.

5.
Chempluschem ; 80(6): 919-927, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31973255

RESUMEN

The oxidative polymerization of 5,6-dihydroxyindoles and related hydroxyindoles at pH<3 is diverted from the usual eumelanin-forming pathway to produce mixtures of symmetric and asymmetric triazatruxenes (TATs), which could be separated and characterized for their opto-electronic properties with the aid of TD-DFT calculations. Data showed that the asymmetric isomers exhibit higher fluorescence quantum efficiencies, lower HOMO-LUMO gaps, better film homogeneity, and a more definite aggregation behavior than the symmetric counterparts, suggesting promising applications in organic electronics. The enhanced luminance exhibited by the OLED devices fabricated with blends of the synthesized TATs in poly-9-vinylcarbazole confirmed the potential of the asymmetric skeleton as new versatile platform for light-emitting materials.

6.
Chempluschem ; 80(6): 898, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31973265

RESUMEN

Invited for this month's cover is the group of Dr. Paola Manini from the University of Naples Federico II. The cover picture shows the concept underlying the design of a melanin-inspired electroluminescent material for OLED devices. This article is part of a well-structured research project aimed at imitating Nature's most enigmatic and fascinating functional pigments for the design and synthesis of innovative biomaterials for organic electronics applications. Read the full text of the article at 10.1002/cplu.201402444.

7.
Langmuir ; 30(41): 12421-8, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25260154

RESUMEN

Silicon carbide powders have been synthesized from tires utilizing a patented recycling process. Dynamic light scattering, Raman spectroscopy, SEM microscopy, and X-ray diffraction have been carried out to gather knowledge about powders and the final composite structure. The obtained powder has been proven to induce resistive switching in a PMMA polymer-based composite device. Memory effect has been detected in two-terminal devices having coplanar contacts and quantified by read-write-erase measurements in terms of level separation and persistence.

8.
Nanotechnology ; 24(31): 315206, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23857986

RESUMEN

In this work we demonstrate the possibility to realize a novel unconventional ITO-free organic light emitting diode (OLED) utilizing a photonic polymeric electrode. Combining electron beam lithography and a plasma etching process to partially structure the highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) it is possible to realize an embedded photonic crystal (PC) structure. The realized PC-anode drastically reduces the light trapped in the OLED, demonstrating the possibility to eliminate further process stages and making it easier to use this technology even on rollable and flexible substrates.

9.
ACS Appl Mater Interfaces ; 5(11): 4777-82, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23639365

RESUMEN

This paper presents a novel strategy to fabricate two-dimensional poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) photonic crystals (PCs) combining electron beam lithography (EBL) and plasma etching (PE) processes. The surface morphology of PEDOT:PSS PCs after mild oxygen plasma treatment was investigated by scanning electron microscopy. The effects on light extraction are studied experimentally. Vertical extraction of light was found to be strongly dependent on the geometric parameters of the PCs. By changing the lattice type from triangular to square and the geometrical parameters of the photonic structures, the resonance peak could be tuned from a narrow blue emission at 445 nm up to a green emission at 525 nm with a full width at half-maximum of 20 nm, which is in good agreement with Bragg's diffraction theory and free photon band structure. Both finite-difference time-domain and plane wave expansion methods are used to calculate the resonant frequencies and the photonic band structures in the two-dimensional photonic crystals showing a very good agreement with the experiment results. A 2D nanopatterned transparent anode was also fabricated onto a flexible polyethylene terephthalate (PET) substrate and it was integrated into an organic light-emitting diode (OLED). The obtained results fully confirm the feasibility of the developed process of micro/nano patterning PEDOT:PSS. Engineered polymer electrodes prepared by this unique method are useful in a wide variety of high-performance flexible organic optoelectronics.

10.
Opt Lett ; 35(20): 3333-5, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20967057

RESUMEN

The interference effects generated in a bottom-emitting electroluminescent device fabricated on a polymer underlayer introduced with the aim of improving the anode roughness have been studied. The analysis of the interference fringes at different detection angles and the spatial coherence demonstrates that this phenomenon is due to multiple internal reflections that propagate in the polymer layer. This effect can be eliminated by modifying the polymer thickness and the incidence angle of the electromagnetic radiation at the anode-polymer interface. Inkjet etching technology is adopted for microcavities-shaped polymer structuring to destroy the resonator effect of the optical cavity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...