Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heart Vessels ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797744

RESUMEN

It remains to be elucidated whether Ca2+ antagonists induce pharmacological preconditioning to protect the heart against ischemia/reperfusion injury. The aim of this study was to determine whether and how pretreatment with a Ca2+ antagonist, azelnidipine, could protect cardiomyocytes against hypoxia/reoxygenation (H/R) injury in vitro. Using HL-1 cardiomyocytes, we studied effects of azelnidipine on NO synthase (NOS) expression, NO production, cell death and apoptosis during H/R. Action potential durations (APDs) were determined by the whole-cell patch-clamp technique. Azelnidipine enhanced endothelial NOS phosphorylation and NO production in HL-1 cells under normoxia, which was abolished by a heat shock protein 90 inhibitor, geldanamycin, and an antioxidant, N-acetylcysteine. Pretreatment with azelnidipine reduced cell death and shortened APDs during H/R. These effects of azelnidipine were diminished by a NOS inhibitor, L-NAME, but were influenced by neither a T-type Ca2+ channel inhibitor, NiCl2, nor a N-type Ca2+ channel inhibitor, ω-conotoxin. The azelnidipine-induced reduction in cell death was not significantly enhanced by either additional azelnidipine treatment during H/R or increasing extracellular Ca2+ concentrations. RNA sequence (RNA-seq) data indicated that azelnidipine-induced attenuation of cell death, which depended on enhanced NO production, did not involve any significant modifications of gene expression responsible for the NO/cGMP/PKG pathway. We conclude that pretreatment with azelnidipine protects HL-1 cardiomyocytes against H/R injury via NO-dependent APD shortening and L-type Ca2+ channel blockade independently of effects on gene expression.

2.
Ann Plast Surg ; 90(2): 171-179, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688861

RESUMEN

ABSTRACT: Platelet-rich plasma (PRP) and adipose-derived stem cells (ADSCs) are known to secrete angiogenic factors that contribute to the treatment of intractable ulcers. The combination of PRP and ADSCs may enhance their angiogenic effects. However, it remains unclear whether treatment of ADSCs with PRP influences angiogenesis. We studied whether the conditioned medium from PRP-treated ADSCs under hypoxic conditions exerts angiogenic effects. Although PRP stimulated the proliferation of ADSCs obtained from rats, it decreased the mRNA levels of vascular endothelial growth factor, hepatocyte growth factor, and TGF-ß1, but not of basic fibroblast growth factor, under hypoxia. The conditioned medium of PRP-treated ADSCs inhibited endothelial nitric oxide synthase phosphorylation, decreased NO production, and suppressed tube formation in human umbilical vein endothelial cells. Transplantation of ADSCs alone increased both blood flow and capillary density of the ischemic limb; however, its combination with PRP did not further improve blood flow or capillary density. This suggests that both conditioned medium of ADSCs treated with PRP and combination of PRP with ADSCs transplantation may attenuate the phosphorylation of endothelial nitric oxide synthase and angiogenesis.


Asunto(s)
Plasma Rico en Plaquetas , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratas , Animales , Medios de Cultivo Condicionados/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Óxido Nítrico Sintasa de Tipo III , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Células Madre/metabolismo , Plasma Rico en Plaquetas/metabolismo , Tejido Adiposo/metabolismo , Células Cultivadas
3.
Clin Exp Nephrol ; 26(6): 522-529, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35212881

RESUMEN

BACKGROUND: Familial juvenile hyperuricemic nephropathy (FJHN) is an autosomal dominant disorder caused by mutations in UMOD. Here we studied effects of genetic expression and pharmacological induction of Hsp70 on the UMOD mutants C112Y and C217G. METHODS: We expressed wild type (WT), C112Y and C217G in HEK293 cells and studied their maturation and cellular damage using western blot and flow cytometry. RESULTS: Expression of C112Y or C217G increased pro-apoptotic proteins, decreased anti-apoptotic proteins, and induced cellular apoptosis as examined by annexin V staining and flow cytometry. Overexpression of Hsp70 or administration of an Hsp70 inducer geranylgeranylacetone (GGA) promoted maturation of the mutant proteins, increased their secreted forms, normalized the levels of pro- and anti-apoptotic proteins and suppressed apoptosis. CONCLUSION: These findings indicated that Hsp70 enhanced maturation of C112Y and C217G and reduced cellular apoptosis, suggesting that Hsp70 induction might be of a therapeutic value for treatment of FJHN.


Asunto(s)
Hiperuricemia , Proteínas Reguladoras de la Apoptosis/genética , Gota , Células HEK293 , Humanos , Hiperuricemia/genética , Enfermedades Renales , Linaje , Uromodulina/genética
4.
Hypertens Res ; 43(5): 380-388, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31942044

RESUMEN

Myocardial ischemia/reperfusion injury worsens in the absence of nitric oxide synthase (NOS). Cilnidipine, a Ca2+ channel blocker, has been reported to activate endothelial NOS (eNOS) and increases nitric oxide (NO) in vascular endothelial cells. We examined whether pretreatment with cilnidipine could attenuate cardiac cell deaths including apoptosis caused by hypoxia/reoxygenation (H/R) injury. HL-1 mouse atrial myocytes as well as H9c2 rat ventricular cells were exposed to H/R, and cell viability was evaluated by an autoanalyzer and flow cytometry; eNOS expression, NO production, and electrophysiological properties were also evaluated by western blotting, colorimetry, and patch clamping, respectively, in the absence and presence of cilnidipine. Cilnidipine enhanced phosphorylation of eNOS and NO production in a concentration-dependent manner, which was abolished by siRNAs against eNOS or an Hsp90 inhibitor, geldanamycin. Pretreatment with cilnidipine attenuated cell deaths including apoptosis during H/R; this effect was reproduced by an NO donor and a xanthine oxidase inhibitor. The NOS inhibitor L-NAME abolished the protective action of cilnidipine. Pretreatment with cilnidipine also attenuated H9c2 cell death during H/R. Additional cilnidipine treatment during H/R did not significantly enhance its protective action. There was no significant difference in the protective effect of cilnidipine under normal and high Ca2+ conditions. Action potential duration (APD) of HL-1 cells was shortened by cilnidipine, with this shortening augmented after H/R. L-NAME attenuated the APD shortening caused by cilnidipine. These findings indicate that cilnidipine enhances NO production, shortens APD in part by L-type Ca2+ channel block, and thereby prevents HL-1 cell deaths during H/R.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Dihidropiridinas/farmacología , Hipoxia/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Óxido Nítrico/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Ratones , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación/efectos de los fármacos , ARN Interferente Pequeño , Ratas
5.
Biomed Res ; 38(4): 229-238, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28794400

RESUMEN

Proepicardium (PE) cells generate cardiac fibroblasts, smooth muscle cells (SMCs) and endothelial cells that form coronary arteries. T-box18 (Tbx18) is a well-known marker of PE cells and epicardium. We examined whether Tbx18-positive cells differentiated from murine embryonic stem (ES) cells serve as PE progenitors to give rise to vascular SMCs and fibroblasts. To collect Tbx18-positive cells, we established Tbx18-EGFP knock-in mouse ES cells using the CRISPR/Cas9 system. We harvested the Tbx18-EGFP-positive cells on day 8, 10 and 14 after the initiation of differentiation; Tbx18 mRNA was enriched on day 8 to 14 and Snai2 mRNA was enriched on day 8 and 10, indicating successful collection of Tbx18-positive cells. Tbx18-EGFP-positive cells expressed the PE marker WT1 on day 8 and 10. They also expressed the SMC marker Acta2 and fibroblast markers Thy1 and Fsp1 on day 8 to 14, but did not express the endothelial cell marker PECAM or the cardiac cell marker CD166 or Myh7. In conclusion, Tbx18-positive cells represent a part of PE cells in the initial phase of differentiation and subsequently include SMCs as well as fibroblasts. These results indicate that Tbx18-positive cells serve as a PE progenitor to supply a variety of cells that contribute to the formation of coronary arteries.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Pericardio/citología , Proteínas de Dominio T Box/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Técnicas de Sustitución del Gen , Orden Génico , Marcación de Gen , Genes Reporteros , Vectores Genéticos/genética , Ratones , Microscopía Fluorescente , Músculo Liso Vascular/citología , Pericardio/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas de Dominio T Box/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...