RESUMEN
Objective. Carboxypeptidase E (CPE) plays an important role in the biosynthesis of neurotransmitters and peptide hormones including insulin. It also promotes cell proliferation, survival, and invasion of tumor cells. The endoplasmic reticulum stress, hypoxia, and nutrient supply are significant factors of malignant tumor growth including glioblastoma. There are data indicating that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) suppressed glioblastoma cell proliferation and increased invasiveness of these cells. The present study aims to investigate the regulation of the CPE gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in the regulation of this gene expression and function in tumorigenesis. Methods. Human glioblastoma cells U87MG (transfected by an empty vector; control) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine; for glucose and glutamine deprivations, the cells were cultured in DMEM medium without glucose or glutamine for 16 h, respectively. The expression level of the CPE gene was studied by quantitative RT-PCR and normalized to ACTB. Results. It was found that inhibition of endoribonuclease and protein kinase activities of ERN1 led to a strong up-regulation of CPE gene expression in glioblastoma cells. The expression of this gene also increased in glioblastoma cells after silencing ERN1. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease only. The expression of the CPE gene was resistant to hypoxia in control U87MG cells, but increased in cells with ERN1 knockdown. The expression of this gene was up-regulated under glutamine deprivation in control glioblastoma cells, but decreased upon ERN1 knockdown. However, glucose deprivation decreased the expression of CPE gene in both types of used cells, but ERN1 inhibition enhanced this effect. Conclusion. The results of the present study demonstrate that inhibition of ERN1 strongly up-regulated the expression of pro-oncogenic CPE gene through protein kinase activity of ERN1 and that increased CPE gene expression possibly participates in ERN1 knockdown-mediated invasiveness of glioblastoma cells.
Asunto(s)
Carboxipeptidasa H , Estrés del Retículo Endoplásmico , Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Proteínas Serina-Treonina Quinasas , Humanos , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/patología , Carboxipeptidasa H/metabolismo , Carboxipeptidasa H/genética , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Glucosa/metabolismo , Técnicas de Silenciamiento del Gen , Hipoxia de la Célula/fisiología , Transducción de Señal/fisiologíaRESUMEN
BACKGROUND: Endoplasmic reticulum stress and synthesis of serine are essential for tumor growth, but the mechanism of their interaction is not clarified yet. The overarching goal of this work was to investigate the impact of ERN1 (endoplasmic reticulum to nucleus signaling 1) inhibition on the expression of serine synthesis genes in U87MG glioblastoma cells concerning the suppression of cell proliferation. METHODS: Wild type U87MG glioblastoma cells and their clones with overexpression of transgenes dnERN1 (without cytoplasmic domain of ERN1) and dnrERN1 (with mutation in endoribonuclease of ERN1), and empty vector (as control) were used. The silencing of ERN1 and XBP1 was also used to inhibition of ERN1 and its function. Gene expression was measured by qPCR. RESULTS: We show that the expression of PSAT1 and several other related to serine synthesis genes is suppressed in cells with ERN1 inhibition by dissimilar mechanisms: PHGDH gene through ERN1 protein kinase, because its expression was resistant to inhibition of ERN1 endoribonuclease, but ATF4 gene via endoribonuclease of ERN1. However, in the control of PSAT1 and PSPH genes both enzymatic activities of ERN1 signaling protein are involved. At the same time, ERN1 knockdown strongly increased SHMT1 expression, which controls serine metabolism and enhances the proliferation and invasiveness of glioma cells. The level of microRNAs, which have binding sites in PSAT1, SHMT1, and PSPH mRNAs, was also changed in cells harboring dnERN1 transgene. Inhibition of ERN1 suppressed cell proliferation and enzymatic activity of PHGDH, a rate-limiting enzyme for serine synthesis. CONCLUSION: Changes in the expression of phosphoserine aminotransferase 1 and other genes related to serine synthesis are mediated by diverse ERN1-dependent mechanisms and contributed to suppressed proliferation and enhanced invasiveness of ERN1 knockdown glioblastoma cell.
Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Proteínas Serina-Treonina Quinasas , Transaminasas , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular Tumoral , Transaminasas/genética , Transaminasas/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Técnicas de Silenciamiento del Gen , Serina/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genéticaRESUMEN
BACKGROUND: The ERN1 (endoplasmic reticulum to nucleus signaling 1) pathway plays an important role in the regulation of gene expression in glioblastoma, but molecular mechanism has not yet been fully elucidated. The aim of this study was to evaluate the relative relevance of ERN1 activity as a kinase in comparison to its endoribonuclease activity in the regulation of homeobox gene expression. METHODS: Two sublines of U87MG glioblastoma cells with different ways of ERN1 inhibition were used: dnERN1 (overexpressed transgene without protein kinase and endoribonuclease) and dnrERN1 (overexpressed transgene with mutation in endoribonuclease). ERN1 suppression was also done using siRNA for ERN1. Silencing of XBP1 mRNA by specific siRNA was used for suppression of ERN1 endoribonuclease function mediated by XBP1s. The expression levels of homeobox genes and microRNAs were evaluated by qPCR. RESULTS: The expression of TGIF1 and ZEB2 genes was downregulated in both types of glioblastoma cells with inhibition of ERN1 showing the ERN1 endoribonuclease-dependent mechanism of their regulation. However, the expression of PBX3 and PRPRX1 genes did not change significantly in dnrERN1 glioblastoma cells but was upregulated in dnERN1 cells indicating the dependence of these gene expressions on the ERN1 protein kinase. At the same time, the changes in PAX6 and PBXIP1 gene expressions introduced in glioblastoma cells by dnrERN1 and dnERN1 were different in direction and magnitude indicating the interaction of ERN1 protein kinase and endoribonuclease activities in regulation of these gene expressions. The impact of ERN1 and XBP1 silencing on the expression of studied homeobox genes is similar to that observed in dnERN1 and dnrERN1 glioblastoma cells, correspondingly. CONCLUSION: The expression of TGIF1 and other homeobox genes is dependent on the ern1 signaling pathways by diverse mechanisms because inhibition of ERN1 endoribonuclease and both ERN1 enzymatic activities had dissimilar impacts on the expression of most studied genes showing that ERN1 protein kinase plays an important role in controlling homeobox gene expression associated with glioblastoma cell invasion.
Asunto(s)
Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Proteínas de Homeodominio , Proteínas Serina-Treonina Quinasas , Humanos , Línea Celular Tumoral , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Genes Homeobox , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
Objective. Serine hydroxymethyltransferase (SHMT2) plays a multifunctional role in mitochondria (folate-dependent tRNA methylation, translation, and thymidylate synthesis). The endoplasmic reticulum stress, hypoxia, and glucose and glutamine supply are significant factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) pathway of endoplasmic reticulum stress strongly suppressed glioblastoma cell proliferation and modified the sensitivity of these cells to hypoxia and glucose or glutamine deprivations. The present study aimed to investigate the regulation of the SHMT2 gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in sensitivity of this gene expression to hypoxia and nutrient supply. Methods. The control U87MG glioblastoma cells (transfected by an empty vector) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (500 ng/ml for 4 h). For glucose and glutamine deprivations, cells were exposed in DMEM without glucose and glutamine, respectively for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of the SHMT2 gene was studied by real-time qPCR and normalized to ACTB. Results. It was found that inhibition of ERN1 endoribonuclease and protein kinase in glioblastoma cells led to a down-regulation of SHMT2 gene expression in U87MG cells. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease, but tunicamycin strongly increased its expression. Moreover, the expression of the SHMT2 gene was not affected in U87MG cells after silencing of XBP1. Hypoxia up-regulated the expression level of the SHMT2 gene in both control and ERN1 knockdown U87MG cells. The expression of this gene was significantly up-regulated in glioblastoma cells under glucose and glutamine deprivations and ERN1 knockdown significantly increased the sensitivity of the SHMT2 gene to these nutrient deprivation conditions. Conclusion. The results of the present study demonstrate that the expression of the SHMT2 gene responsible for serine metabolism and formation of folate one-carbon is controlled by ERN1 protein kinase and induced by hypoxia as well as glutamine and glucose deprivation conditions in glioblastoma cells and reflects the ERN1-mediated reprogramming of sensitivity this gene expression to nutrient deprivation.
Asunto(s)
Estrés del Retículo Endoplásmico , Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glicina Hidroximetiltransferasa , Humanos , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Estrés del Retículo Endoplásmico/fisiología , Estrés del Retículo Endoplásmico/genética , Línea Celular Tumoral , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Glucosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula/fisiología , Hipoxia de la Célula/genética , Glutamina/metabolismo , Técnicas de Silenciamiento del GenRESUMEN
Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.
Asunto(s)
Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glucosa , Glutamina , Fosfoglicerato-Deshidrogenasa , Monoéster Fosfórico Hidrolasas , Proteínas Serina-Treonina Quinasas , Serina , Transaminasas , Humanos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Serina/biosíntesis , Transducción de SeñalRESUMEN
OBJECTIVE.: Homeobox genes play an important role in health and disease including oncogenesis. The present investigation aimed to study ERN1-dependent hypoxic regulation of the expression of genes encoding homeobox proteins MEIS (zinc finger E-box binding homeobox 2) and LIM homeobox 1 family, SPAG4 (sperm associated antigen 4) and NKX3-1 (NK3 homeobox 1) in U87MG glioblastoma cells in response to inhibition of ERN1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of glioblastoma growth. METHODS.: The expression level of homeobox genes was studied in control (transfected by vector) and ERN1 knockdown U87MG glioblastoma cells under hypoxia induced by dimethyloxalylglycine (0.5 mM for 4 h) by quantitative polymerase chain reaction and normalized to ACTB. RESULTS.: It was found that hypoxia down-regulated the expression level of LHX2, LHX6, MEIS2, and NKX3-1 genes but up-regulated the expression level of MEIS1, LHX1, MEIS3, and SPAG4 genes in control glioblastoma cells. At the same time, ERN1 knockdown of glioblastoma cells significantly modified the sensitivity of all studied genes to a hypoxic condition. Thus, ERN1 knockdown of glioblastoma cells removed the effect of hypoxia on the expression of MEIS1 and LHX1 genes, but increased the sensitivity of MEIS2, LHX2, and LHX6 genes to hypoxia. However, the expression of MEIS3, NKX3-1, and SPAG4 genes had decreased sensitivity to hypoxia in ERN1 knockdown glioblastoma cells. Moreover, more pronounced changes under the conditions of ERN1 inhibition were detected for the pro-oncogenic gene SPAG4. CONCLUSION.: The results of the present study demonstrate that hypoxia affected the expression of homeobox genes MEIS1, MEIS2, MEIS3, LHX1, LHX2, LHX6, SPAG4, and NKX3-1 in U87MG glioblastoma cells in gene-specific manner and that the sensitivity of all studied genes to hypoxia condition is mediated by ERN1, the major pathway of the endoplasmic reticulum stress signaling, and possibly contributed to the control of glioblastoma growth. A fundamentally new results of this work is the establishment of the fact regarding the dependence of hypoxic regulation of SPAG4 gene expression on ER stress, in particular ERN1, which is associated with suppression of cell proliferation and tumor growth.
Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Genes Homeobox , Proteínas Serina-Treonina Quinasas/genética , Proteínas con Homeodominio LIM/genética , Hipoxia de la Célula/genética , Regulación Neoplásica de la Expresión Génica/genética , Hipoxia/genética , Factores de Transcripción/genética , Expresión Génica , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Endorribonucleasas/genéticaRESUMEN
Objective. Serine synthesis as well as endoplasmic reticulum stress and hypoxia are important factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of ERN1 (endoplasmic reticulum to nucleus signaling) significantly suppressed the glioblastoma cell proliferation and modified the hypoxia regulation. The present study is aimed to investigate the impact of hypoxia on the expression of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine aminotransferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) in U87MG glioblastoma cells in relation to knockdown of ERN1 with the intent to reveal the role of ERN1 signaling pathway on the endoplasmic reticulum stress-dependent regulation of expression of these genes. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed to hypoxia introduced by dimethyloxalylglycine for 4 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH, PSAT1, PDPH, SHMT1, and ATF4 genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that hypoxia up-regulated the expression level of PHGDH, PSAT1, and ATF4 genes in control U87MG cells, but PSPH and SHMT1 genes expression was down-regulated. The expression of PHGDH, PSAT1, and ATF4 genes in glioblastoma cells with knockdown of ERN1 signaling protein was more sensitive to hypoxia, especially PSAT1 gene. At the same time, the expression of PSPH gene in ERN1 knockdown cells was resistant to hypoxia. The expression of SHMT1 gene, encoding the enzyme responsible for conversion of serine to glycine, showed similar negative sensitivity to hypoxia in both control and ERN1 knockdown glioblastoma cells. Conclusion. The results of the present study demonstrate that the expression of genes responsible for serine synthesis is sensitive to hypoxia in gene-specific manner and that ERN1 knockdown significantly modifies the impact of hypoxia on the expression of PHGDH, PSAT1, PSPH, and ATF4 genes in glioblastoma cells and reflects the ERN1-mediated reprograming of hypoxic regulation at gene expression level.
Asunto(s)
Glioblastoma , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Glioblastoma/genética , Hipoxia de la Célula/genética , Serina/genética , Serina/metabolismo , Endorribonucleasas/genética , Hipoxia/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genéticaRESUMEN
Objective. Single-walled carbon nanotubes (SWCNTs) are considered to be one of the nanomaterials attractive for biomedical applications, particularly in the health sciences as imaging probes and drug carriers, especially in the field of cancer therapy. The increasing exploitation of nanotubes necessitates a comprehensive evaluation of the potential impact of these nanomaterials, which purposefully accumulate in the cell nucleus, on the human health and the function of the genome in the normal and tumor tissues. The aim of this study was to investigate the sensitivity of the expression of DNAJB9 and some other genes associated with the endoplasmic reticulum (ER) stress and cell proliferation to low doses of SWCNTs in normal human astrocytes (NHA/TS) and glioblastoma cells (U87MG) with and without an inhibition of ERN1 signaling pathway of the ER stress. Methods. Normal human astrocytes, line NHA/TS and U87 glioblastoma cells stable transfected by empty vector or dnERN1 (dominant-negative construct of ERN1) were exposed to low doses of SWCNTs (2 and 8 ng/ml) for 24 h. RNA was extracted from the cells and used for cDNA synthesis. The expression levels of DNAJB9, TOB1, BRCA1, DDX58, TFPI2, CLU, and P4HA2 mRNAs were measured by a quantitative polymerase chain reaction and normalized to ACTB mRNA. Results. It was found that the low doses of SWCNTs up-regulated the expression of DNAJB9, TOB1, BRCA1, DDX58, TFPI2, CLU, and P4HA2 genes in normal human astrocytes in dose-dependent (2 and 8 ng/ml) and gene-specific manner. These nanotubes also increased the expression of most studied genes in control (transfected by empty vector) U87 glioblastoma cells, but with much lesser extent than in NHA/TS. However, the expression of CLU gene in control U87 glioblastoma cells treated with SWCNTs was down-regulated in a dose-dependent manner. Furthermore, the expression of TOB1 and P4HA2 genes did not significantly change in these glioblastoma cells treated by lower dose of SWCNTs only. At the same time, inhibition of ERN1 signaling pathway of ER stress in U87 glioblastoma cells led mainly to a stronger resistance of DNAJB9, TOB1, BRCA1, DDX58, TFPI2, and P4HA2 gene expression to both doses of SWCNTs. Conclusion. The data obtained demonstrate that the low doses of SWCNTs disturbed the genome functions by changing the levels of key regulatory gene expressions in gene-specific and dose-dependent manner, but their impact was much stronger in the normal human astrocytes in comparison with the tumor cells. It is possible that ER stress, which is constantly present in tumor cells and responsible for multiple resistances, also created a partial resistance to the SWCNTs action. Low doses of SWCNTs induced more pronounced changes in the expression of diverse genes in the normal human astrocytes compared to glioblastoma cells indicating for a possible both genotoxic and neurotoxic effects with a greater extent in the normal cells.
Asunto(s)
Glioblastoma , Nanotubos de Carbono , Humanos , Glioblastoma/genética , Astrocitos , Proteínas Serina-Treonina Quinasas/genética , Línea Celular Tumoral , Proteínas de la Membrana/genética , Chaperonas Moleculares/genética , Proteínas del Choque Térmico HSP40RESUMEN
Objective. Homeobox genes play a fundamental role in the embryogenesis, but some of them have been linked to oncogenesis. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of homeobox genes such as PAX6 (paired box 6), PBX3 (PBX homeobox 3), PBXIP1 (PBX homeobox interacting protein 1), MEIS1 (MEIS homeobox 1), and MEIS2 in ERN1 knockdown U87 glioma cells with the intent to reveal the role of ERN1 (endoplasmic reticulum to nucleus signaling 1) signaling pathway on the endoplasmic reticulum stress dependent regulation of homeobox genes. Methods. The control (transfected by empty vector) and ERN1 knockdown (transfected by dominant-negative ERN1) U87 glioma cells were exposed to glucose and glutamine deprivations for 24 h. The cells RNA was extracted and reverse transcribed. The expression level of PAX6, PBX3, PBXIP1, MEIS1, and MEIS2 genes was evaluated by a real-time quantitative polymerase chain reaction analysis and normalized to ACTB. Results. It was found that glucose deprivation down-regulated the expression level of PAX6, MEIS1, and MEIS2 genes in control glioma cells, but did not significantly alter PBX3 and PBXIP1 genes expression. At the same time, ERN1 knockdown significantly modified the sensitivity of all studied genes to glucose deprivation. Other changes in gene expression were detected in control glioma cells under the glutamine deprivation. The expression of PBX3 and MEIS2 genes was down- while PAX6 and PBXIP1 genes up-regulated. Furthermore, ERN1 knockdown significantly modified the effect of glutamine deprivation on the majority of studied genes expression in U87 glioma cells. Conclusion. The results of the present study demonstrate that the exposure of U87 glioma cells under glucose and glutamine deprivations affected the expression of the majority of the studied homeobox genes and that the sensitivity of PAX6, PBX3, PBXIP1, MEIS1, and MEIS2 genes expression under these experimental conditions is mediated by ERN1, the major pathway of the endoplasmic reticulum stress signaling.
Asunto(s)
Genes Homeobox , Glioma , Humanos , Glutamina/genética , Glutamina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Glucosa , Regulación Neoplásica de la Expresión Génica/genética , Hipoxia de la Célula/genética , Glioma/genética , Glioma/metabolismo , Factores de Transcripción/genética , Línea Celular Tumoral , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Endorribonucleasas/genéticaRESUMEN
Objective. Glucocorticoids are important stress-responsive regulators of insulin-dependent metabolic processes realized through specific changes in genome function. The aim of this study was to investigate the impact of cortisol on insulin receptor and related genes expression in HEK293 cells upon induction the endoplasmic reticulum (ER) stress by tunicamycin and hypoxia. Methods. The human embryonic kidney cell line HEK293 was used. Cells were exposed to cortisol (10 µM) as well as inducers of hypoxia (dimethyloxalylglycine, DMOG; 0.5 mM) and ER stress (tunicamycin; 0.2 µg/ml) for 4 h. The RNA from these cells was extracted and reverse transcribed. The expression level of INSR, IRS2, and INSIG2 and some ER stress responsive genes encoding XBP1n, non-spliced variant, XBP1s, alternatively spliced variant of XBP1, and DNAJB9 proteins, was measured by quantitative polymerase chain reaction and normalized to ACTB. Results. We showed that exposure of HEK293 cells to cortisol elicited up-regulation in the expression of INSR and DNAJB9 genes and down-regulation of XBP1s, XBP1n, IRS2, and INSIG2 mRNA levels. At the same time, induction of hypoxia by DMOG led to an up-regulation of the expression level of most studied mRNAs: XBP1s and XBP1n, IRS2 and INSIG2, but did not change significantly INSR and DNAJB9 gene expression. We also showed that combined impact of cortisol and hypoxia introduced the up-regulation of INSR and suppressed XBP1n mRNA expression levels. Furthermore, the exposure of HEK293 cells to tunicamycin affected the expression of IRS2 gene and increased the level of XBP1n mRNA. At the same time, the combined treatment of these cells with cortisol and inductor of ER stress had much stronger impact on the expression of all the tested genes: strongly increased the mRNA level of ER stress dependent factors XBP1s and DNAJB9 as well as INSR and INSIG2, but down-regulated IRS2 and XBP1n. Conclusion. Taken together, the present study indicates that cortisol may interact with ER stress and hypoxia in the regulation of ER stress dependent XBP1 and DNAJB9 mRNA expression as well as INSR and its signaling and that this corticosteroid hormone modified the impact of hypoxia and especially tunicamycin on the expression of most studied genes in HEK293 cells. These data demonstrate molecular mechanisms of glucocorticoids interaction with ER stress and insulin signaling at the cellular level.
Asunto(s)
Estrés del Retículo Endoplásmico , Hidrocortisona , Receptor de Insulina , Humanos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HEK293 , Proteínas del Choque Térmico HSP40 , Hidrocortisona/farmacología , Hipoxia , Insulina/farmacología , Proteínas de la Membrana/genética , Chaperonas Moleculares , ARN Mensajero/metabolismo , Tunicamicina/farmacologíaRESUMEN
Objective. The aim of the present study was to investigate the expression of pyruvate dehydrogenase genes such as PDHA1, PDHB, DLAT, DLD, and PDHX in U87 glioma cells in response to glutamine and glucose deprivations in control glioma cells and endoplasmic reticulum to nucleus signaling 1 (ERN1) knockdown cells, the major endoplasmic reticulum (ER) stress signaling pathway, to find out whether there exists a possible dependence of these important regulatory genes expression on both glutamine and glucose supply as well as ERN1 signaling. Methods. The expression level of PDHA1, PDHB, DLAT, DLD, and PDHX genes was studied by real-time quantitative polymerase chain reaction in control U87 glioma cells (transfected by empty vector) and cells with inhibition of ERN1(transfected by dnERN1) after cells exposure to glucose and glutamine deprivations. Results. The data showed that the expression level of PDHA1, PDHB, DLAT, and DLD genes was down-regulated (more profound in PDHB gene) in control glioma cells treated with glutamine deprivation. At the same time, ERN1 knockdown modified the impact of glutamine deprivation on the expression level of all these genes in glioma cells: suppressed the sensitivity of PDHB and DLD genes expression and removed the impact of glutamine deprivation on the expression of PDHA1 and DLAT genes. Glucose deprivation did not significantly change the expression level of all studied genes in control glioma cells, but ERN1 knockdown is suppressed the impact of glucose deprivation on PDHX and DLD genes expression and significantly enhanced the expression of PDHA1 and PDHB genes. No significant changes were observed in the sensitivity of PDHX gene expression to glutamine deprivation neither in control nor ERN1 knock-down glioma cells. The knock-down of ERN1 removed the sensitivity of DLAT gene expression to glucose deprivation. Conclusion. The results of this investigation demonstrate that the exposure of control U87 glioma cells under glutamine deprivation significantly affected the expression of PDHA1, PDHB, DLAT, and DLD genes in a gene specific manner and that impact of glutamine deprivation was modified by inhibition of the ER stress signaling mediated by ERN1. At the same time, glucose deprivation affected the expression of PDHA1, PDHB, PDHX, and DLD genes in ERN1 knockdown glioma cells only. Thus, the expression of pyruvate dehydrogenase genes under glutamine and glucose deprivation conditions appears to be controlled by the ER stress signaling through ERN1.
Asunto(s)
Glioma , Glutamina , Humanos , Glutamina/farmacología , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Glucosa/farmacología , Proteínas Serina-Treonina Quinasas/genética , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Glioma/genética , Glioma/metabolismo , Transducción de Señal , Oxidorreductasas/metabolismo , PiruvatosRESUMEN
Objective. Nanographene oxide, an oxidation derivative of graphene, is considered to be one of the nanomaterials attractive for biomedical applications, although this nanomaterial is toxic. The increasing exploitation of graphene-based materials necessitates a comprehensive evaluation of the potential impact of these materials on the human health. Moreover, it is necessary to investigate in detail the mechanisms of its toxic effect on living cells particularly at the genome level. The present study aimed to evaluate the impact of low doses of nanographene oxide on the expression of key regulatory genes in normal human astrocytes. Methods. Normal human astrocytes, line NHA/TS, were exposed to low doses of nanographene oxide (1 and 4 ng/ml) for 24 h. RNA was extracted from the cells and used for cDNA synthesis. The expression levels of NAMPT, TSPAN13, BCAR3, BRCA1, PTGS2, P4HA1, and P4HA2 mRNAs as well as microRNAs were measured by quantitative polymerase chain reaction. Results. It was found that the low doses of nanographene oxide induced a dysregulation in the expression of the key regulatory genes in normal human astrocytes in dose-dependent (1 and 4 ng/ml) and gene-specific manner. Nanographene oxide also strongly suppressed the expression of NAMPT, BCAR3, and TSPAN13 genes and significantly up-regulated BRCA1, PTGS2, P4HA1, and P4HA2 ones with a more significant effect in P4HA1 and P4HA2 genes. The expression of miR-96-5p and miR-145-5p was also down-regulated in astrocytes treated with nanographene oxide in a dose-dependent manner. Conclusion. The data obtained demonstrate that the low doses of nanographene oxide disturbed the genome functions by changing the expression levels of key regulatory genes in gene-specific and dose-dependent manner. Moreover, a higher dose of nanographene oxide induced more pronounced changes in expression of genes indicating for both genotoxic and neurotoxic possible effects in the normal human astrocytes.
Asunto(s)
Grafito , MicroARNs , Astrocitos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Expresión Génica , Grafito/metabolismo , Grafito/toxicidad , Humanos , MicroARNs/genética , Óxidos/metabolismo , Óxidos/toxicidad , Tetraspaninas/genética , Tetraspaninas/metabolismoRESUMEN
Objective. Single-walled carbon nanotubes (SWCNTs) are able to cross the blood-brain barrier, penetrate through the cell membrane, and accumulate in the cell nucleus, which purposefully allows their use in the health sciences as imaging probes and drug carriers in the cancer therapy. The aim of this study was to investigate the effect of low doses of SWCNTs on the expression of microRNAs associated with the cell proliferation and the brain development in zebrafish (Danio rerio) embryos. Methods. The zebrafish embryos (72 h post fertilization) were exposed to low doses of SWCNTs (2 and 8 ng/ml of medium) for 24 or 72 h. The microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) expression levels were measured by quantitative polymerase chain reaction analysis. Results. It was found that low doses of SWCNTs elicited dysregulation in the expression of numerous cell proliferation and brain development-related microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) in dose- (2 and 8 ng/ml of medium) as well as malformations in the zebrafish embryos brain development in a time-dependent (24 and 72 h) manner. Conclusion. Taken together, the present data indicate that the low doses of SWCNTs disturbed the genome functions and reduced the miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206 expression levels in dose- and time-dependent manners and interrupted the brain development in the zebrafish embryos indicating for both the genotoxic and the neurotoxic interventions.
Asunto(s)
MicroARNs , Nanotubos de Carbono , Animales , MicroARNs/genética , MicroARNs/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismoRESUMEN
Nano-titanium nitride (Nano-TiN) has strong resistance to wear and corrosion, good biocompatibility, and an attractive metallic luster. Nano-TiN is widely used in medical devices, such as orthopedic implants, syringe needles, coronary stents, and long-term dental implants, and also in imitation gold jewelry. Despite its widespread use, there are few reports describing safety evaluations of Nano-TiN. Here, we exposed healthy zebrafish embryos to different concentrations of Nano-TiN solution for five days, starting at about four hours post fertilization, and found that Nano-TiN caused dose- and time-dependent developmental toxicity. With increasing Nano-TiN concentration and length of exposure, mortality, and deformities gradually increased; body length shortened and hatching rate and motility were significantly reduced. We also found that exposure to Nano-TiN affected development of the heart, liver, nerves, and other organs, and led to elevated levels of reactive oxygen species and reduced antioxidant capacity. Exposure to Nano-TiN resulted in downregulation of expression of antioxidant genes, such as nrf2, gclc, gclm, ho-1, and nqo1. Our results showed that exposure to Nano-TiN caused developmental and organ toxicity in zebrafish embryos and that the toxic effects may be mediated through oxidative stress.
Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Antioxidantes/metabolismo , Embrión no Mamífero/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidadRESUMEN
Objective. The aim of the present investigation was to study the impact of glucose and gluta-mine deprivations on the expression of genes encoding EDN1 (endothelin-1), its cognate receptors (EDNRA and EDNRB), and ECE1 (endothelin converting enzyme 1) in U87 glioma cells in response to knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), a major signaling pathway of endoplasmic reticulum stress, for evaluation of their possible implication in the control of glioma growth through ERN1 and nutrient limitations. Methods. The expression level of EDN1, its receptors and converting enzyme 1 in control U87 glioma cells and cells with knockdown of ERN1 treated by glucose or glutamine deprivation by quantitative polymerase chain reaction was studied. Results. We showed that the expression level of EDN1 and ECE1 genes was significantly up-regulated in control U87 glioma cells exposure under glucose deprivation condition in comparison with the glioma cells, growing in regular glucose containing medium. We also observed up-regulation of ECE1 gene expression in U87 glioma cells exposure under glutamine deprivation as well as down-regulation of the expression of EDN1 and EDNRA mRNA, being more significant for EDN1. Furthermore, the knockdown of ERN1 signaling enzyme function significantly modified the response of most studied gene expressions to glucose and glutamine deprivation conditions. Thus, the ERN1 knockdown led to a strong suppression of EDN1 gene expression under glucose deprivation, but did not change the effect of glutamine deprivation on its expression. At the same time, the knockdown of ERN1 signaling introduced the sensitivity of EDNRB gene to both glucose and glutamine deprivations as well as completely removed the impact of glucose deprivation on the expression of ECE1 gene. Conclusions. The results of this study demonstrated that the expression of endothelin-1, its receptors, and ECE1 genes is preferentially sensitive to glucose and glutamine deprivations in gene specific manner and that knockdown of ERN1 significantly modified the expression of EDN1, EDNRB, and ECE1 genes in U87 glioma cells. It is possible that the observed changes in the expression of studied genes under nutrient deprivation may contribute to the suppressive effect of ERN1 knockdown on glioma cell proliferation and invasiveness.
Asunto(s)
Endorribonucleasas/metabolismo , Endotelina-1/metabolismo , Enzimas Convertidoras de Endotelina/metabolismo , Glioma/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Línea Celular Tumoral , Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , ARN Mensajero/metabolismoRESUMEN
OBJECTIVE: The aim of the present investigation was to study the expression of genes encoding polyfunctional proteins insulinase (insulin degrading enzyme, IDE) and pitrilysin metallopeptidase 1 (PITRM1) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of metabolism through ERN1 signaling as well as hypoxia, glucose and glutamine deprivations. METHODS: The expression level of IDE and PITRM1 genes was studied in control and ERN1 knockdown U87 glioma cells under glucose and glutamine deprivations as well as hypoxia by quantitative polymerase chain reaction. RESULTS: It was found that the expression level of IDE and PITRM1 genes was down-regulated in ERN1 knockdown (without ERN1 protein kinase and endoribonuclease activity) glioma cells in comparison with the control glioma cells, being more significant for PITRM1 gene. We also found up-regulation of microRNA MIR7-2 and MIRLET7A2, which have specific binding sites in 3'-untranslated region of IDE and PITRM1 mRNAs, correspondingly, and can participate in posttranscriptional regulation of these mRNA expressions. Only inhibition of ERN1 endoribonuclease did not change significantly the expression of IDE and PITRM1 genes in glioma cells. The expression of IDE and PITRM1 genes is preferentially regulated by ERN1 protein kinase. We also showed that hypoxia down-regulated the expression of IDE and PITRM1 genes and that knockdown of ERN1 signaling enzyme function modified the response of these gene expressions to hypoxia. Glucose deprivation increased the expression level of IDE and PITRM1 genes, but ERN1 knockdown enhanced only the effect of glucose deprivation on PITRM1 gene expression. Glutamine deprivation did not affect the expression of IDE gene in both types of glioma cells, but up-regulated PITRM1 gene and this up-regulation was stronger in ERN1 knockdown cells. CONCLUSIONS: Results of this investigation demonstrate that ERN1 knockdown significantly decreases the expression of IDE and PITRM1 genes by ERN1 protein kinase mediated mechanism. The expression of both studied genes was sensitive to hypoxia as well as glucose deprivation and dependent on ERN1 signaling in gene-specific manner. It is possible that the level of these genes expression under hypoxia and glucose deprivation is a result of complex interaction of variable endoplasmic reticulum stress related and unrelated regulatory factors and contributed to the control of the cell metabolism.
Asunto(s)
Hipoxia de la Célula/fisiología , Endorribonucleasas/genética , Glioma/genética , Glucosa/deficiencia , Insulisina/genética , Metaloendopeptidasas/genética , Proteínas Serina-Treonina Quinasas/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula/genética , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioma/metabolismo , Glioma/patología , Glucosa/farmacología , Humanos , Insulisina/metabolismo , Metaloendopeptidasas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genéticaRESUMEN
OBJECTIVE: The aim of the present investigation was to study the expression of genes encoding homeobox proteins ZEB2 (zinc finger E-box binding homeobox 2), TGIF1 (TGFB induced factor homeobox 1), SPAG4 (sperm associated antigen 4), LHX1 (LIM homeobox 1), LHX2, LHX6, NKX3-1 (NK3 homeobox 1), and PRRX1 (paired related homeobox 1) in U87 glioma cells in response to glucose deprivation in control glioma cells and cells with knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), the major pathway of the endoplasmic reticulum stress signaling, for evaluation of it possible significance in the control of glioma growth through ERN1 signaling and chemoresistance. METHODS: The expression level of homeobox family genes was studied in control (transfected by vector) and ERN1 knockdown U87 glioma cells under glucose deprivation condition by real-time quantitative polymerase chain reaction. RESULTS: It was shown that the expression level of ZEB2, TGIF1, PRRX1, and LHX6 genes was up-regulated in control glioma cells treated by glucose deprivation. At the same time, the expression level of three other genes (NKX3-1, LHX1, and LHX2) was down-regulated. Furthermore, ERN1 knockdown of glioma cells significantly modified the effect glucose deprivation condition on the expression almost all studied genes. Thus, treatment of glioma cells without ERN1 enzymatic activity by glucose deprivation condition lead to down-regulation of the expression level of ZEB2 and SPAG4 as well as to more significant up-regulation of PRRX1 and TGIF1 genes. Moreover, the expression of LHX6 and NKX3-1 genes lost their sensitivity to glucose deprivation but LHX1 and LHX2 genes did not change it significantly. CONCLUSIONS: The results of this investigation demonstrate that ERN1 knockdown significantly modifies the sensitivity of most studied homeobox gene expressions to glucose deprivation condition and that these changes are a result of complex interaction of variable endoplasmic reticulum stress related and unrelated regulatory factors and contributed to glioma cell growth and possibly to their chemoresistance.
Asunto(s)
Neoplasias Encefálicas/genética , Endorribonucleasas/genética , Genes Homeobox , Glioma/genética , Glucosa/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula/genética , Línea Celular Tumoral , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Homeobox/efectos de los fármacos , Glioma/metabolismo , Glioma/patología , Glucosa/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Transducción de Señal/genéticaRESUMEN
OBJECTIVE: The aim of the present study was to investigate the effect of adipokine NAMPT (nicotinamide phosphoribosyltransferase) silencing on the expression of genes encoding IRS1 (insulin receptor substrate 1) and some other proliferation related proteins in U87 glioma cells for evaluation of the possible significance of this adipokine in intergenic interactions. METHODS: The silencing of NAMPT mRNA was introduced by NAMPT specific siRNA. The expression level of NAMPT, IGFBP3, IRS1, HK2, PER2, CLU, BNIP3, TPD52, GADD45A, and MKI67 genes was studied in U87 glioma cells by quantitative polymerase chain reaction. Anti-visfatin antibody was used for detection of NAMPT protein by Western-blot analysis. RESULTS: It was shown that the silencing of NAMPT mRNA led to a strong down-regulation of NAMPT protein and significant modification of the expression of IRS1, IGFBP3, CLU, HK2, BNIP3, and MKI67 genes in glioma cells and a strong up-regulation of IGFBP3 and IRS1 and down-regulation of CLU, BNIP3, HK2, and MKI67 gene expressions. At the same time, no significant changes were detected in the expression of GADD45A, PER2, and TPD52 genes in glioma cells treated by siRNA specific to NAMPT. Furthermore, the silencing of NAMPT mRNA suppressed the glioma cell proliferation. CONCLUSIONS: Results of this investigation demonstrated that silencing of NAMPT mRNA with corresponding down-regulation of NAMPT protein and suppression of the glioma cell proliferation affected the expression of IRS1 gene as well as many other genes encoding the proliferation related proteins. It is possible that dysregulation of most of the studied genes in glioma cells after silencing of NAMPT is reflected by a complex of intergenic interactions and that NAMPT is an important factor for genome stability and regulatory mechanisms contributing to the control of glioma cell metabolism and proliferation.
Asunto(s)
Citocinas/genética , Regulación Neoplásica de la Expresión Génica/genética , Expresión Génica/genética , Glioma/genética , Proteínas Sustrato del Receptor de Insulina/genética , Nicotinamida Fosforribosiltransferasa/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Clusterina/genética , Regulación hacia Abajo , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Proteínas Circadianas Period/genética , Proteínas Proto-Oncogénicas/genética , ARN Mensajero , ARN Interferente Pequeño , Regulación hacia ArribaRESUMEN
Objective. The aim of the present investigation was to study the expression of genes encoding IRS1 (insulin receptor substrate 1) and some other functionally active proteins in U87 glioma cells under silencing of polyfunctional chaperone HSPB8 for evaluation of the possible significance of this protein in intergenic interactions.Methods. Silencing of HSPB8 mRNA was introduced by HSPB8 specific siRNA. The expression level of HSPB8, IRS1, HK2, GLO1, HOMER3, MYL9, NAMPT, PER2, PERP, GADD45A, and DEK genes was studied in U87 glioma cells by quantitative polymerase chain reaction.Results. It was shown that silencing of HSPB8 mRNA by specific to HSPB8 siRNA led to a strong down-regulation of this mRNA and significant modification of the expression of IRS1 and many other genes in glioma cells: strong up-regulated of HOMER3, GLO1, and PERP and down-regulated of MYL9, NAMPT, PER2, GADD45A, and DEK gene expressions. At the same time, no significant changes were detected in the expression of HK2 gene in glioma cells treated by siRNA, specific to HSPB8. Moreover, the silencing of HSPB8 mRNA enhanced the glioma cells proliferation rate.Conclusions. Results of this investigation demonstrated that silencing of HSPB8 mRNA affected the expression of IRS1 gene as well as many other genes encoding tumor growth related proteins. It is possible that the dysregulation of most of the studied genes in glioma cells after silencing of HSPB8 is reflected by a complex of intergenic interactions and that this polyfunctional chaperone is an important factor for the stability of genome function and regulatory mechanisms contributing to the tumorigenesis control.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Glioma/genética , Proteínas de Choque Térmico/genética , Proteínas Sustrato del Receptor de Insulina/genética , Chaperonas Moleculares/genética , Línea Celular Tumoral , Silenciador del Gen , Humanos , ARN Mensajero , Regulación hacia ArribaRESUMEN
OBJECTIVE: The aim of the present investigation was to study the effect of hypoxia on the expression of genes encoding endothelin-1 (EDN1) and its cognate receptors (EDNRA and EDNRB) as well as endothelin converting enzyme 1 (ECE1) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of glioma growth through ERN1 and hypoxia. METHODS: The expression level of EDN1, EDNRA, EDNRB, and ECE1 genes as well as micro-RNA miR-19, miR-96, and miR-206 was studied in control and ERN1 knockdown U87 glioma cells under hypoxia by quantitative polymerase chain reaction. RESULTS: It was shown that the expression level of EDN1, EDNRA, EDNRB, and ECE1 genes was up-regulated in ERN1 knockdown glioma cells in comparison with the control glioma cells, being more significant for endothelin-1. We also observed down-regulation of microRNA miR-206, miR-96, and miR-19a, which have specific binding sites in mRNA EDN1, EDNRA, and EDNRB, correspondingly, and can participate in posttranscriptional regulation of these mRNA expressions. Furthermore, inhibition of ERN1 endoribonuclease lead to up-regulation of EDNRA and ECE1 gene expressions and down-regulation of the expression level of EDN1 and EDNRB genes in glioma cells. Thus, the expression of EDNRA and ECE1 genes is regulated by ERN1 endoribonuclease, but EDN1 and EDNRB genes preferentially by ERN1 protein kinase. We have also shown that hypoxia enhanced the expression of EDN1, EDNRA, and ECE1 genes and that knockdown of ERN1 signaling enzyme function significantly modified the response of all studied gene expressions to hypoxia. Thus, effect of hypoxia on the expression level of EDN1 and ECE1 genes was significantly or completely reduced in ERN1 knockdown glioma cells since the expression of EDNRA gene was down-regulated under hypoxia. Moreover, hypoxia is induced the expression of EDNRB gene in ERN1 knockdown glioma cells. CONCLUSIONS: Results of this investigation demonstrate that ERN1 knockdown significantly increased the expression of endothelin-1 and its receptors as well as ECE1 genes by different mechanisms and that all studied gene expressions were sensitive to hypoxia. It is possible that hypoxic regulation of the expression of these genes is a result of complex interaction of variable ERN1 related transcription and regulatory factors with HIF1A and possibly contributed to the control of glioma growth.