Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmacol Rep ; 76(2): 424-434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519732

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) can cause right ventricular (RV) failure and subsequent cardiohepatic syndrome referred to as congestive hepatopathy (CH). Passive blood stasis in the liver can affect inflammation, fibrosis, and ultimately cirrhosis. Cannabidiol (CBD) has many beneficial properties including anti-inflammatory and reduces RV systolic pressure and RV hypertrophy in monocrotaline (MCT)-induced PH in rats. Thus, it suggests that CBD may have the potential to limit CH development secondary to RV failure. The present study aimed to determine whether chronic administration of CBD can inhibit the CH secondary to RV hypertrophy associated with MCT-induced PH. METHODS: The experiments involved rats with and without MCT-induced PH. CBD (10 mg/kg) or its vehicle was administered once daily for 3 weeks after MCT injection (60 mg/kg). RESULTS: Monocrotaline administration increased the liver/body weight ratio. In histology examinations, we observed necrosis and vacuolar degeneration of hepatocytes as well as sinusoidal congestion. In biochemical studies, we observed increased levels of nuclear factor-κappa B (NF-κB), tumour necrosis factor-alpha (TNA-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6). CBD administration to PH rats reduced the liver/body weight ratio, improved the architecture of the liver, and inhibited the formation of necrosis. Cannabidiol also decreased the level of NF-κB, TNF-α, IL-1ß and IL-6. CONCLUSIONS: The studies show that CBD can protect the liver from CH probably through attenuating PH, protective effects on the RV, and possibly direct anti-inflammatory effects on liver tissue through regulation of the NF-κB pathway.


Asunto(s)
Cannabidiol , Insuficiencia Cardíaca , Hipertensión Pulmonar , Ratas , Animales , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/prevención & control , Hipertrofia Ventricular Derecha/prevención & control , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Cannabidiol/farmacología , Interleucina-6 , Monocrotalina/toxicidad , FN-kappa B , Factor de Necrosis Tumoral alfa , Antiinflamatorios/uso terapéutico , Necrosis , Peso Corporal
2.
J Am Heart Assoc ; 12(10): e026950, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37183873

RESUMEN

Background Cardiac metabolic abnormalities are present in heart failure. Few studies have followed metabolic changes accompanying diastolic and systolic heart failure in the same model. We examined metabolic changes during the development of diastolic and severe systolic dysfunction in spontaneously hypertensive rats (SHR). Methods and Results We serially measured myocardial glucose uptake rates with dynamic 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography in vivo in 9-, 12-, and 18-month-old SHR and Wistar Kyoto rats. Cardiac magnetic resonance imaging determined systolic function (ejection fraction) and diastolic function (isovolumetric relaxation time) and left ventricular mass in the same rats. Cardiac metabolomics was performed at 12 and 18 months in separate rats. At 12 months, SHR hearts, compared with Wistar Kyoto hearts, demonstrated increased isovolumetric relaxation time and slightly reduced ejection fraction indicating diastolic and mild systolic dysfunction, respectively, and higher (versus 9-month-old SHR decreasing) 2-[18F] fluoro-2-deoxy-d-glucose uptake rates (Ki). At 18 months, only few SHR hearts maintained similar abnormalities as 12-month-old SHR, while most exhibited severe systolic dysfunction, worsening diastolic function, and markedly reduced 2-[18F] fluoro-2-deoxy-d-glucose uptake rates. Left ventricular mass normalized to body weight was elevated in SHR, more pronounced with severe systolic dysfunction. Cardiac metabolite changes differed between SHR hearts at 12 and 18 months, indicating progressive defects in fatty acid, glucose, branched chain amino acid, and ketone body metabolism. Conclusions Diastolic and severe systolic dysfunction in SHR are associated with decreasing cardiac glucose uptake, and progressive abnormalities in metabolite profiles. Whether and which metabolic changes trigger progressive heart failure needs to be established.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Ratas , Animales , Ratas Endogámicas SHR , Tomografía Computarizada por Rayos X , Ratas Endogámicas WKY , Glucosa , Desoxiglucosa , Presión Sanguínea
3.
Front Pharmacol ; 13: 965613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120288

RESUMEN

Pulmonary hypertension (PH) is a disease leading to increased pressure in the pulmonary artery and right heart failure. The adenosine monophosphate-activated protein kinase (AMPK) activator, metformin, has a protective effect against PH. CB1 receptor blockade reduces the number of pathological alterations in experimental lung fibrosis. The current study evaluates the effect of the peripheral cannabinoid CB1 receptor antagonist JD5037 in mono- and polytherapy with metformin in rat monocrotaline-induced mild PH. Animals received metformin (100 mg/kg), JD5037 (3 mg/kg), or a combination of both once daily for 21 days. Monocrotaline (60 mg/kg) increased right ventricular (RV) systolic pressure (RVSP), led to RV and lung hypertrophy and remodeling, and decreased oxygen saturation. Metformin partially restored the monocrotaline-induced effects, i.e., decreased RVSP, increased oxygen saturation, and counteracted cardiac fibrotic, hypertrophic, and inflammatory changes. JD5037 modified parameters related to inflammation and/or fibrosis. Only polytherapy with metformin and JD5037 improved Fulton's index and coronary artery hypertrophy and tended to be more effective than monotherapy against alterations in RVSP, oxygen saturation and coronary artery tunica media vacuolization. In conclusion, monotherapy with JD5037 does not markedly influence the PH-related changes. However, polytherapy with metformin tends to be more efficient than any of these compounds alone.

4.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683028

RESUMEN

This review is dedicated to the cross-talk between the (endo)cannabinoid and renin angiotensin systems (RAS). Activation of AT1 receptors (AT1Rs) by angiotensin II (Ang II) can release endocannabinoids that, by acting at cannabinoid CB1 receptors (CB1Rs), modify the response to AT1R stimulation. CB1R blockade may enhance AT1R-mediated responses (mainly vasoconstrictor effects) or reduce them (mainly central nervous system-mediated effects). The final effects depend on whether stimulation of CB1Rs and AT1Rs induces opposite or the same effects. Second, CB1R blockade may diminish AT1R levels. Third, phytocannabinoids modulate angiotensin-converting enzyme-2. Additional studies are required to clarify (1) the existence of a cross-talk between the protective axis of the RAS (Ang II-AT2 receptor system or angiotensin 1-7-Mas receptor system) with components of the endocannabinoid system, (2) the influence of Ang II on constituents of the endocannabinoid system and (3) the (patho)physiological significance of AT1R-CB1R heteromerization. As a therapeutic consequence, CB1R antagonists may influence effects elicited by the activation or blockade of the RAS; phytocannabinoids may be useful as adjuvant therapy against COVID-19; single drugs acting on the (endo)cannabinoid system (cannabidiol) and the RAS (telmisartan) may show pharmacokinetic interactions since they are substrates of the same metabolizing enzyme of the transport mechanism.


Asunto(s)
COVID-19 , Cannabinoides , Angiotensina II/metabolismo , Cannabinoides/farmacología , Endocannabinoides/farmacología , Humanos , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Cannabinoides , Renina/farmacología , Sistema Renina-Angiotensina
5.
Cells ; 11(9)2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35563848

RESUMEN

We have previously shown that in urethane-anaesthetized rats, intravenous injection of the angiotensin II (Ang II) AT1 receptor antagonist losartan reversed the pressor effect of the cannabinoid CB1 receptor agonist CP55940 given in the paraventricular nucleus of hypothalamus (PVN). The aim of our study was to determine the potential interactions in the PVN between CB1 receptors and AT1 and AT2 receptors for Ang II and Mas receptors for Ang 1-7 in blood pressure regulation in conscious spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats. The pressor effects of Ang II, Ang 1-7 and CP55940 microinjected into the PVN were stronger in SHRs than in WKYs. Increases in blood pressure in response to Ang II were strongly inhibited by antagonists of AT1 (losartan), AT2 (PD123319) and CB1 (AM251) receptors, to Ang 1-7 by a Mas antagonist (A-779) and AM251 and to CP55940 by losartan, PD123319 and A-779. Higher (AT1 and CB1) and lower (AT2 and Mas) receptor expression in the PVN of SHR compared to WKY may partially explain the above differences. In conclusion, blood pressure control in the PVN depends on the mutual interaction of CB1, AT1, AT2 and Mas receptors in conscious spontaneously hypertensive rats and their normotensive controls.


Asunto(s)
Hipertensión , Núcleo Hipotalámico Paraventricular , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Presión Sanguínea , Hipertensión/metabolismo , Losartán/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
6.
Cells ; 11(7)2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35406706

RESUMEN

The use of cannabis preparations has steadily increased. Although cannabis was traditionally assumed to only have mild vegetative side effects, it has become evident in recent years that severe cardiovascular complications can occur. Cannabis use has recently even been added to the risk factors for myocardial infarction. This review is dedicated to pathogenetic factors contributing to cannabis-related myocardial infarction. Tachycardia is highly important in this respect, and we provide evidence that activation of CB1 receptors in brain regions important for cardiovascular regulation and of presynaptic CB1 receptors on sympathetic and/or parasympathetic nerve fibers are involved. The prototypical factors for myocardial infarction, i.e., thrombus formation and coronary constriction, have also been considered, but there is little evidence that they play a decisive role. On the other hand, an increase in the formation of carboxyhemoglobin, impaired mitochondrial respiration, cardiotoxic reactions and tachyarrhythmias associated with the increased sympathetic tone are factors possibly intensifying myocardial infarction. A particularly important factor is that cannabis use is frequently accompanied by tobacco smoking. In conclusion, additional research is warranted to decipher the mechanisms involved, since cannabis use is being legalized increasingly and Δ9-tetrahydrocannabinol and its synthetic analogue nabilone are indicated for the treatment of various disease states.


Asunto(s)
Cannabinoides , Cannabis , Infarto del Miocardio , Adolescente , Analgésicos , Agonistas de Receptores de Cannabinoides , Cannabinoides/efectos adversos , Cannabis/efectos adversos , Corazón , Humanos , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico
7.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576212

RESUMEN

Currently, no treatment can completely cure pulmonary hypertension (PH), which can lead to right ventricular failure and, consequently, death. Therefore, searching for new therapies remains important. Increased resistance in pulmonary circulation is mainly caused by the excessive contraction and proliferation of small pulmonary arteries. Cannabinoids, a group of lipophilic compounds that all interact with cannabinoid receptors, exert a pulmonary vasodilatory effect through several different mechanisms, including mechanisms that depend on vascular endothelium and/or receptor-based mechanisms, and may also have anti-proliferative and anti-inflammatory properties. The vasodilatory effect is important in regulating pulmonary resistance, which can improve patients' quality of life. Moreover, experimental studies on the effects of cannabidiol (plant-derived, non-psychoactive cannabinoid) in animal PH models have shown that cannabidiol reduces right ventricular systolic pressure and excessive remodelling and decreases pulmonary vascular hypertrophy and pulmonary vascular resistance. Due to the potentially beneficial effects of cannabinoids on pulmonary circulation and PH, in this work, we review whether cannabinoids can be used as an adjunctive therapy for PH. However, clinical trials are still needed to recommend the use of cannabinoids in the treatment of PH.


Asunto(s)
Cannabinoides/metabolismo , Hipertensión Pulmonar/terapia , Animales , Antiinflamatorios/farmacología , Cannabidiol/farmacología , Proliferación Celular , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Ventrículos Cardíacos , Humanos , Técnicas In Vitro , Ligandos , Pulmón/metabolismo , Óxido Nítrico , Circulación Pulmonar , Receptores de Cannabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sístole , Vasoconstricción , Vasodilatación , Disfunción Ventricular Derecha
8.
Front Med (Lausanne) ; 8: 618645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898476

RESUMEN

Recently, we developed a three-compartment dual-output model that incorporates spillover (SP) and partial volume (PV) corrections to simultaneously estimate the kinetic parameters and model-corrected blood input function (MCIF) from dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) images of mouse heart in vivo. In this study, we further optimized this model and utilized the estimated MCIF to compute cerebral FDG uptake rates, K i , from dynamic total-body FDG PET images of control Wistar-Kyoto (WKY) rats and compared to those derived from arterial blood sampling in vivo. Dynamic FDG PET scans of WKY rats (n = 5), fasted for 6 h, were performed using the Albira Si Trimodal PET/SPECT/CT imager for 60 min. Arterial blood samples were collected for the entire imaging duration and then fitted to a seven-parameter function. The 60-min list mode PET data, corrected for attenuation, scatter, randoms, and decay, were reconstructed into 23 time bins. A 15-parameter dual-output model with SP and PV corrections was optimized with two cost functions to compute MCIF. A four-parameter compartment model was then used to compute cerebral Ki. The computed area under the curve (AUC) and K i were compared to that derived from arterial blood samples. Experimental and computed AUCs were 1,893.53 ± 195.39 kBq min/cc and 1,792.65 ± 155.84 kBq min/cc, respectively (p = 0.76). Bland-Altman analysis of experimental vs. computed K i for 35 cerebral regions in WKY rats revealed a mean difference of 0.0029 min-1 (~13.5%). Direct (AUC) and indirect (Ki) comparisons of model computations with arterial blood sampling were performed in WKY rats. AUC and the downstream cerebral FDG uptake rates compared well with that obtained using arterial blood samples. Experimental vs. computed cerebral K i for the four super regions including cerebellum, frontal cortex, hippocampus, and striatum indicated no significant differences.

9.
J Am Heart Assoc ; 9(7): e015154, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32248762

RESUMEN

Background In spontaneously hypertensive rats (SHR) we observed profound myocardial metabolic changes during early hypertension before development of cardiac dysfunction and left ventricular hypertrophy. In this study, we evaluated whether metformin improved myocardial metabolic abnormalities and simultaneously prevented contractile dysfunction and left ventricular hypertrophy in SHR. Methods and Results SHR and control Wistar-Kyoto rats were treated with metformin from 2 to 5 months of age, when SHR hearts exhibit metabolic abnormalities and develop cardiac dysfunction and left ventricular hypertrophy. We evaluated the effect of metformin on myocardial glucose uptake rates with dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography. We used cardiac MRI in vivo to assess the effect of metformin on ejection fraction, left ventricular mass, and end-diastolic wall thickness, and also analyzed metabolites, AMP-activated protein kinase and mammalian target-of-rapamycin activities, and mean arterial blood pressure. Metformin-treated SHR had lower mean arterial blood pressure but remained hypertensive. Cardiac glucose uptake rates, left ventricular mass/tibia length, wall thickness, and circulating free fatty acid levels decreased to normal, and ejection fraction improved in treated SHR. Hearts of treated SHR exhibited increased AMP-activated protein kinase phosphorylation and reduced mammalian target-of-rapamycin activity. Cardiac metabolite profiling demonstrated that metformin decreased fatty acyl carnitines and markers of oxidative stress in SHR. Conclusions Metformin reduced blood pressure, normalized myocardial glucose uptake, prevented left ventricular hypertrophy, and improved cardiac function in SHR. Metformin may exert its effects by normalizing myocardial AMPK and mammalian target-of-rapamycin activities, improving fatty acid oxidation, and reducing oxidative stress. Thus, metformin may be a new treatment to prevent or ameliorate chronic hypertension-induced left ventricular hypertrophy.


Asunto(s)
Presión Arterial/efectos de los fármacos , Fármacos Cardiovasculares/farmacología , Metabolismo Energético/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/prevención & control , Metformina/farmacología , Miocardio/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Serina-Treonina Quinasas TOR/metabolismo
10.
Phys Med Biol ; 64(16): 165010, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31307015

RESUMEN

The purpose of this work was to compute blood input function from the inferior vena cava (IVC) with partial volume (PV) corrections and compare to that obtained from the left ventricular blood pool (LVBP) with spill-over (SP) and PV corrections. These were then used to compute and validate rates of myocardial 2-deoxy-2-[18F]fluoro-D-glucose (FDG) uptake (Ki) from dynamic positron emission tomography (PET) images of rat hearts in vivo in comparison to that obtained from invasive arterial blood sampling. Whole body 60 min dynamic FDG PET/CT imaging of n = 8 control Wistar Kyoto (WKY) rats were performed using Albira trimodal PET/CT/SPECT scanner. Image derived blood input function (IDIF) obtained from IVC corrected for PV averaging (IVC-PV) and IDIF from the left ventricular blood pool (LVBP) with SP and PV corrections (LVBP-SP-PV) were computed. Next, computed Ki (indirect comparison) in a 5-parameter (using IVC-PV) and a 15-parameter (using LVBP-SP-PV) 3-compartment models in WKY rat hearts in vivo were compared to that obtained using arterial blood sampling reported in literature in control Spraque Dawley (SD) rats. Using IVC-PV in a three-compartment five-parameter model resulted in a ~46% deviation in the mean computed Ki compared to that obtained with LVBP-SP-PV in a three-compartment 15-parameter model with a ~57% deviation in the mean computed Ki. The mean computed Ki in WKY rat hearts using the above methods, however, did not differ significantly to that obtained from invasive arterial blood sampling in SD rat hearts (p  = 0.91 for IVC-PV and p  = 0.58 for LVBP-SP-PV). Hence, Ki obtained in WKY rat hearts with input curve from IVC (IVC-PV) in a dynamic FDG PET scan is comparatively more repetitive to that obtained from the LVBP (LVBP-SP-PV). Ki computed using both the methods, however, agree well with each other and that obtained using arterial blood sampling.


Asunto(s)
Glucosa/metabolismo , Ventrículos Cardíacos/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Miocardio/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Vena Cava Inferior/diagnóstico por imagen , Vena Cava Inferior/fisiología , Algoritmos , Animales , Transporte Biológico , Fluorodesoxiglucosa F18 , Cinética , Masculino , Ratas , Ratas Endogámicas WKY
11.
Front Med (Lausanne) ; 6: 88, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31131277

RESUMEN

Ionizing radiation constitutes a health risk to imaging scientists and study animals. Both PET and CT produce ionizing radiation. CT doses in pre-clinical in vivo imaging typically range from 50 to 1,000 mGy and biological effects in mice at this dose range have been previously described. [18F]FDG body doses in mice have been estimated to be in the range of 100 mGy for [18F]FDG. Yearly, the average whole body doses due to handling of activity by PET technologists are reported to be 3-8 mSv. A preclinical PET/CT system is presented with design features which make it suitable for small animal low-dose imaging. The CT subsystem uses a X-source power that is optimized for small animal imaging. The system design incorporates a spatial beam shaper coupled with a highly sensitive flat-panel detector and very fast acquisition (<10 s) which allows for whole body scans with doses as low as 3 mGy. The mouse total-body PET subsystem uses a detector architecture based on continuous crystals, coupled to SiPM arrays and a readout based in rows and columns. The PET field of view is 150 mm axial and 80 mm transaxial. The high solid-angle coverage of the sample and the use of continuous crystals achieve a sensitivity of 9% (NEMA) that can be leveraged for use of low tracer doses and/or performing rapid scans. The low-dose imaging capabilities of the total-body PET subsystem were tested with NEMA phantoms, in tumor models, a mouse bone metabolism scan and a rat heart dynamic scan. The CT imaging capabilities were tested in mice and in a low contrast phantom. The PET low-dose phantom and animal experiments provide evidence that image quality suitable for preclinical PET studies is achieved. Furthermore, CT image contrast using low dose scan settings was suitable as a reference for PET scans. Total-body mouse PET/CT studies could be completed with total doses of <10 mGy.

12.
J Am Heart Assoc ; 8(4): e010926, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30764689

RESUMEN

Background Sustained pressure overload leads to changes in cardiac metabolism, function, and structure. Both time course and causal relationships between these changes are not fully understood. Therefore, we studied spontaneously hypertensive rats (SHR) during early hypertension development and compared them to control Wistar Kyoto rats. Methods and Results We serially evaluated myocardial glucose uptake rates (Ki) with dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography, and ejection fraction and left ventricular mass to body weight ratios with cardiac magnetic resonance imaging in vivo, determined glucose uptake and oxidation rates in isolated perfused hearts, and analyzed metabolites, mammalian target of rapamycin activity and endoplasmic reticulum stress in dissected hearts. When compared with Wistar Kyoto rats, SHR demonstrated increased glucose uptake rates (Ki) in vivo, and reduced ejection fraction as early as 2 months of age when hypertension was established. Isolated perfused SHR hearts showed increased glucose uptake and oxidation rates starting at 1 month. Cardiac metabolite analysis at 2 months of age revealed elevated pyruvate, fatty acyl- and branched chain amino acid-derived carnitines, oxidative stress, and inflammation. Mammalian target of rapamycin activity increased in SHR beginning at 2 months. Left ventricular mass to body weight ratios and endoplasmic reticulum stress were elevated in 5 month-old SHR. Conclusions Thus, in a genetic hypertension model, chronic cardiac pressure overload promptly leads to increased myocardial glucose uptake and oxidation, and to metabolite abnormalities. These coincide with, or precede, cardiac dysfunction while left ventricular hypertrophy develops only later. Myocardial metabolic changes may thus serve as early diagnostic markers for hypertension-induced left ventricular hypertrophy.


Asunto(s)
Presión Sanguínea/fisiología , Ventrículos Cardíacos/fisiopatología , Hipertensión/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Miocardio/patología , Estrés Oxidativo , Función Ventricular Izquierda/fisiología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/metabolismo , Hipertensión/etiología , Hipertensión/fisiopatología , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Tomografía de Emisión de Positrones , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...