Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carbohydr Res ; 507: 108376, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34273862

RESUMEN

Polysialic acid (polySia), a homopolymer of α2,8-linked sialic acid residues, modifies a small number of proteins and has central functions in vertebrate signalling. Here, we review the regulatory functions of polySia in signalling processes and the immune system of adult humans, as well as functions based on their chemical properties. The main focus will be on the structure-function relationship of polySia with its interaction partners in humans. Recent studies have indicated that the degree of polymerisation is an important parameter that can guide the regulatory effect of polySia in addition to its binding to target proteins. Therefore, the structures of polySia in solution and bound to interaction partners are compared in order to identify the key factors that define binding specificity.


Asunto(s)
Ácidos Siálicos , Animales , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33384338

RESUMEN

Human adenovirus species D (HAdV-D) types are currently being explored as vaccine vectors for coronavirus disease 2019 (COVID-19) and other severe infectious diseases. The efficacy of such vector-based vaccines depends on functional interactions with receptors on host cells. Adenoviruses of different species are assumed to enter host cells mainly by interactions between the knob domain of the protruding fiber capsid protein and cellular receptors. Using a cell-based receptor-screening assay, we identified CD46 as a receptor for HAdV-D56. The function of CD46 was validated in infection experiments using cells lacking and overexpressing CD46, and by competition infection experiments using soluble CD46. Remarkably, unlike HAdV-B types that engage CD46 through interactions with the knob domain of the fiber protein, HAdV-D types infect host cells through a direct interaction between CD46 and the hexon protein. Soluble hexon proteins (but not fiber knob) inhibited HAdV-D56 infection, and surface plasmon analyses demonstrated that CD46 binds to HAdV-D hexon (but not fiber knob) proteins. Cryoelectron microscopy analysis of the HAdV-D56 virion-CD46 complex confirmed the interaction and showed that CD46 binds to the central cavity of hexon trimers. Finally, soluble CD46 inhibited infection by 16 out of 17 investigated HAdV-D types, suggesting that CD46 is an important receptor for a large group of adenoviruses. In conclusion, this study identifies a noncanonical entry mechanism used by human adenoviruses, which adds to the knowledge of adenovirus biology and can also be useful for development of adenovirus-based vaccine vectors.


Asunto(s)
Adenovirus Humanos , Vacunas contra la COVID-19 , Proteínas de la Cápside , Regulación Viral de la Expresión Génica , SARS-CoV-2/genética , Internalización del Virus , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/metabolismo , Proteínas de la Cápside/biosíntesis , Proteínas de la Cápside/genética , Línea Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...