RESUMEN
In rheumatoid arthritis, inflammatory mediators extravasate from blood into joints via gaps between endothelial cells (ECs), but the contribution of ECs is not known. Sphingosine 1-phosphate receptor 1 (S1PR1), widely expressed on ECs, maintains the vascular barrier. Here, we assessed the contribution of vascular integrity and EC S1PR1 signaling to joint damage in mice exposed to serum-induced arthritis (SIA). EC-specific deletion of S1PR1 or pharmacological blockade of S1PR1 promoted vascular leak and amplified SIA, whereas overexpression of EC S1PR1 or treatment with an S1PR1 agonist delayed SIA. Blockade of EC S1PR1 induced membrane metalloproteinase-dependent cleavage of vascular endothelial cadherin (VE-cadherin), a principal adhesion molecule that maintains EC junctional integrity. We identified a disintegrin and a metalloproteinase domain 10 (ADAM10) as the principal VE-cadherin "sheddase." Mice expressing a stabilized VE-cadherin construct had decreased extravascular VE-cadherin and vascular leakage in response to S1PR1 blockade, and they were protected from SIA. Importantly, patients with active rheumatoid arthritis had decreased circulating S1P and microvascular expression of S1PR1, suggesting a dysregulated S1P/S1PR1 axis favoring vascular permeability and vulnerability. We present a model in which EC S1PR1 signaling maintains homeostatic vascular barrier function by limiting VE-cadherin shedding mediated by ADAM10 and suggest this signaling axis as a therapeutic target in inflammatory arthritis.
Asunto(s)
Proteína ADAM10 , Antígenos CD , Artritis Experimental , Artritis Reumatoide , Cadherinas , Células Endoteliales , Receptores de Esfingosina-1-Fosfato , Animales , Cadherinas/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Ratones , Artritis Experimental/metabolismo , Artritis Experimental/patología , Antígenos CD/metabolismo , Antígenos CD/genética , Células Endoteliales/metabolismo , Humanos , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/genética , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Transducción de Señal , Ratones Noqueados , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Masculino , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Permeabilidad Capilar , FemeninoRESUMEN
Spin coating is a common method for fabricating polymer thin films on flat substrates. The well-established Meyerhofer relationship between film thickness (h) and spin rate (ω), h â ω-1/2, enables the preparation of thin films with desired thickness by adjusting the spin rate and other experimental parameters. The 1/2 exponent has been verified by previous studies involving organic thin films prepared on silicon wafers. In this study, 88% and >99% hydrolyzed poly(vinyl alcohol) (PVOH) polymers were adsorbed and spin-coated from an aqueous solution onto four different substrates. The substrates were prepared by covalently attaching poly(dimethylsiloxane) (PDMS) of different molecular weights onto silicon wafers (SiO2). Atomic force microscopy images indicate that the PVOH films transitioned from stable on SiO2, to metastable, and then to unstable as PDMS molecular weight was increased. Notably, none of the polymer-substrate systems studied here exhibited the thickness-spin rate profile predicted by the Meyerhofer model. Based on the experimental results, a more general adsorption-deposition model is proposed that decouples the total spin-coated thickness into two componentsâthe adsorbed thickness (h1) and the spin-deposited thickness (h2). The former accounts for polymer-substrate interactions, and the latter depends on polymer concentration and spin rate. In unstable systems, the exponents were found to be â¼0 because slip takes place at the solution-substrate interface during spin and the spin-deposited thickness is 0. In metastable and stable systems, a universal relationship between spin-deposited thickness and spin rate emerged, independent of the substrate type and polymer concentration for each polymer examined. Our findings indicate the importance of film stability and polymer-substrate interactions in the application of spin coating.