Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(2): e0263792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176056

RESUMEN

Recently a technique based on the interaction between adhesion proteins extracted from Streptococcus pyogenes, known as SpyRing, has been widely used to improve the thermal resilience of enzymes, the assembly of biostructures, cancer cell recognition and other fields. It was believed that the covalent cyclization of protein skeleton caused by SpyRing reduces the conformational entropy of biological structure and improves its rigidity, thus improving the thermal resilience of the target enzyme. However, the effects of SpyTag/ SpyCatcher interaction with this enzyme are poorly understood, and their regulation of enzyme properties remains unclear. Here, for simplicity, we took the single domain enzyme lichenase from Bacillus subtilis 168 as an example, studied the interface interactions in the SpyRing by molecular dynamics simulations, and examined the effects of the changes of electrostatic interaction and van der Waals interaction on the thermal resilience of target enzyme. The simulations showed that the interface between SpyTag/SpyCatcher and the target enzyme is different from that found by geometric matching method and highlighted key mutations at the interface that might have effect on the thermal resilience of the enzyme. Our calculations highlighted interfacial interactions between enzyme and SpyTag/SpyCatcher, which might be useful in rational designs of the SpyRing.


Asunto(s)
Bacillus subtilis/enzimología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Calor , Simulación de Dinámica Molecular , Streptococcus pyogenes/enzimología , Ciclización , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA