Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38930723

RESUMEN

High-aspect-ratio micro- and mesoscale metallic components (HAR-MMMCs) can play some unique roles in quite a few application fields, but their cost-efficient fabrication is significantly difficult to accomplish. To address this issue, this study proposes a necked-entrance through-mask (NTM) periodically lifting electroforming technology with an impinging jet electrolyte supply. The effects of the size of the necked entrance of the through-mask and the jet speed of the electrolyte on electrodeposition behaviors, including the thickness distribution of the growing top surface, deposition defect formation, geometrical accuracy, and electrodeposition rate, are investigated numerically and experimentally. Ensuring an appropriate size of the necked entrance can effectively improve the uniformity of deposition thickness, while higher electrolyte flow velocities help enhance the density of the components under higher current densities, reducing the formation of deposition defects. It was shown that several precision HAR-MMMCs with an AR of 3.65 and a surface roughness (Ra) of down to 36 nm can be achieved simultaneously with a relatively high deposition rate of 3.6 µm/min and thickness variation as low as 1.4%. Due to the high current density and excellent mass transfer effects in the electroforming conditions, the successful electroforming of components with a Vickers microhardness of up to 520.5 HV was achieved. Mesoscale precision columns with circular and Y-shaped cross-sections were fabricated by using this modified through-mask movable electroforming process. The proposed NTM periodic lifting electroforming method is promisingly advantageous in fabricating precision HAR-MMMCs cost-efficiently.

2.
Materials (Basel) ; 17(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893993

RESUMEN

GH4169 alloy/Inconel 718 is extensively utilized in aerospace manufacturing due to its excellent high temperature mechanical properties. Micro-structuring on the workpiece surface can enhance its properties further. Through-mask electrochemical micromachining (TMEMM) is a promising and potential processing method for nickel-based superalloys. It can effectively solve the problem that traditional processing methods are difficult to achieve large-scale, high-precision and efficiency processing of surface micro-structure. This study explores the feasibility of electrochemical machining (ECM) for GH4169 using roll-print mask electrochemical machining with a linear cathode. Electrochemical dissolution characteristics of GH4169 alloy were analyzed in various electrolyte solutions and concentrations. Key parameters including cathode sizes, applied voltage and corrosion time were studied in the roll-print mask electrochemical machining. A qualitative model for micro-pit formation on GH4169 was established. Optimal parameters were determined through experiments: 300 µm mask hole and cathode size, 10 wt% NaNO3 electrolyte, 12 V voltage, 6 s corrosion time. The results demonstrate that the micro-pits with a diameter of 402.3 µm, depth of 92.8 µm and etch factor (EF) of 1.81 show an excellent profile and localization.

3.
Micromachines (Basel) ; 15(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38675308

RESUMEN

Zr-based metallic glasses (MGs) are promising materials for mold manufacturing due to their unique mechanical and chemical properties. However, the high hardness of metallic glasses and their tendency to crystallize at high temperatures make it challenging to fabricate precise and smooth microscale structures on metallic glasses. This limitation hampers the development of metallic glasses as molds. Jet electrochemical machining (jet-ECM) is a non-contact subtractive manufacturing technology that utilizes a high-speed electrolyte to partially remove material from workpieces, making it highly suitable for processing difficult-to-machine materials. Nevertheless, few studies have explored microgroove structures on Zr-based MGs using sodium nitrate electrolytes by jet-ECM. Therefore, this paper advocates the utilization of the jet-ECM technique to fabricate precise and smooth microgroove structures using a sodium nitrate electrolyte. The electrochemical characteristics were studied in sodium nitrate solution. Then, the effects of the applied voltages and nozzle travel rates on machining performance were investigated. Finally, micro-helical and micro-S structures with high geometric dimensional consistency and low surface roughness were successfully fabricated, with widths and depths measuring 433.7 ± 2.4 µm and 101.4 ± 1.6 µm, respectively. Their surface roughness was determined to be 0.118 ± 0.002 µm. Compared to non-aqueous-based methods for jet-ECM of Zr-based MGs, the depth of the microgrooves was increased from 20 µm to 101 µm. Furthermore, the processed microstructures had no uneven edges in the peripheral areas and no visible flow marks on the bottom.

4.
Materials (Basel) ; 17(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673087

RESUMEN

Titanium alloys have many excellent characteristics, and they are widely used in aerospace, biomedicine, and precision engineering. Meanwhile, titanium alloys are difficult to machine and passivate readily. Electrochemical grinding (ECG) is an ideal technology for the efficient-precise machining of titanium alloys. In the ECG process of titanium alloys, the common approach of applying high voltage and active electrolytes to achieve high efficiency of material removal will lead to serious stray corrosion, and the time utilized for the subsequent finishing will be extended greatly. Therefore, the application of ECG in the field of high efficiency and precision machining of titanium alloys is limited. In order to address the aforementioned issues, the present study proposed an efficient-precise continuous ECG (E-P-C-ECG) process for Ti-6Al-4V applying high-pulsed voltage with an optimized duty cycle and low DC voltage in the efficient ECG stage and precise ECG stage, respectively, without changing the grinding wheel. According to the result of the passivation properties tests, the ideal electrolyte was selected. Optimization of the process parameters was implemented experimentally to improve the processing efficiency and precision of ECG of Ti-6Al-4V. Utilizing the process advantages of the proposed process, a thin-walled structure of Ti-6Al-4V was obtained with high efficiency and precision. Compared to the conventional mechanical grinding process, the compressive residual stress of the machined surface and the processing time were reduced by 90.5% and 63.3% respectively, and both the surface roughness and tool wear were obviously improved.

5.
Micromachines (Basel) ; 15(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542622

RESUMEN

Amorphous alloy (AA) is a high-performance metal material generally with significantly excellent mechanical and corrosion resistance properties and thus is considered as a desirable material selection for micro-scale articles. However, the microfabrication of AA still faces a variety of technical challenges mainly because the materials are too hard to process and easily lose their original properties, although at moderately high temperatures. In this study, jet-electrolyte electrochemical machining (Jet-ECM) was proposed to microfabricate the Zr-based AA because it is a low-temperature material-removal process based on the anode dissolution mechanism. The electrochemical dissolution characteristics and material removal mechanism of AA were investigated, and then the optimal process parameters were achieved based on the evaluation of the surface morphologies, surface roughness, geometrical profile, and machining accuracy of the machined micro-dimples. Finally, the feasibility was further studied by using Jet-ECM to fabricate arrayed micro-dimples using the optimized parameters. It was found that Jet-ECM can successfully microfabricate mirror-like surface AA arrayed precision micro-dimples with significantly high dimensional accuracy and geometrical consistency. Jet-ECM is a promisingly advantageous microfabrication process for the hard-to-machine AA.

6.
Micromachines (Basel) ; 15(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38398903

RESUMEN

Titanium alloys are widely used in aerospace and biomedicine because of their excellent mechanical characteristics, but these properties also make such alloys difficult to cut. Jet electrochemical micromilling (JEMM) is based on the principle of electrochemical anodic dissolution; it has some inherent advantages for the machining of titanium alloy microstructures. However, titanium oxidizes readily, forming an oxide film that impedes a uniform dissolution during electrochemical machining. Therefore, a high voltage and an aqueous NaCl electrolyte are usually used to break the oxide film, which can lead to severe stray corrosion. To overcome this problem, the present study investigated the JEMM of Ti-6Al-4V using a NaCl-ethylene glycol (NaCl-EG) electrolyte. Electrochemical testing showed that Ti-6Al-4V exhibits a better corrosion resistance in the NaCl-EG electrolyte compared to the aqueous NaCl electrolyte, thereby reducing stray corrosion. The localization and surface quality of the grooves were enhanced significantly when using JEMM with a NaCl-EG electrolyte. A multiple-pass strategy was adopted during JEMM to improve the aspect ratio, and the effects of the feed depth and number of passes on the multiple-pass machining performance were investigated. Ultimately, a square annular microstructure with a high geometric dimensional consistency and a smooth surface was obtained via JEMM with multiple passes using the optimal parameters.

7.
Micromachines (Basel) ; 14(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38004986

RESUMEN

The replacement of gold bonding wire with silver bonding wire can significantly reduce the cost of wire bonding. This paper provides a comprehensive overview of silver wire bonding technology. Firstly, it introduces various types of silver-based bonding wire currently being studied by researchers, including pure silver wire, alloy silver wire, and coated silver wire, and describes their respective characteristics and development statuses. Secondly, the development of silver-based bonding wire in manufacturing and bonding processes is analyzed, including common silver wire manufacturing processes and their impact on silver wire performance, as well as the impact of bonding parameters on silver wire bonding quality and reliability. Subsequently, the reliability of silver wire bonding is discussed, with a focus on analyzing the effects of corrosion, electromigration, and intermetallic compounds on bonding reliability, including the causes and forms of chlorination and sulfurization, the mechanism and path of electromigration, the formation and evolution of intermetallic compounds, and evaluating their impact on bonding strength and reliability. Finally, the development status of silver wire bonding technology is summarized and future research directions for silver wire are proposed.

8.
Micromachines (Basel) ; 14(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37241603

RESUMEN

In order to improve the thickness uniformity of the electroformed metal layer and components, a new electroforming technique is proposed-wire-anode scanning electroforming (WAS-EF). WAS-EF uses an ultrafine inert anode so that the interelectrode voltage/current is superimposed upon a very narrow ribbon-shaped area at the cathode, thus ensuring better localization of the electric field. The anode of WAS-EF is in constant motion, which reduces the effect of the current edge effect. The stirring paddle of WAS-EF can affect the fluid flow in the microstructure, and improve the mass transfer effect inside the structure. The simulation results show that, when the depth-to-width ratio decreases from 1 to 0.23, the depth of fluid flow in the microstructure can increase from 30% to 100%. Experimental results show that. Compared with the traditional electroforming method, the single metal feature and arrayed metal components prepared by WAS-EF are respectively improved by 15.5% and 11.4%.

9.
Micromachines (Basel) ; 15(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38258195

RESUMEN

An ultra-narrow precision slit with a width of less than ten micrometers is the key structure of some optical components, but the fabrication of these structures is still very difficult to accomplish. To fabricate these slits, this paper proposed a periodically reducing current over-growth electroforming process. In the periodically reducing current over-growth electroforming, the electric current applied to the electrodeposition process is periodically stepped down rather than being constant. Simulations and experimentation studies were carried out to verify the feasibility of the proposed process, and further optimization of process parameters was implemented experimentally to achieve the desired ultra-narrow precision slits. The current values were: I1=Iinitial, I2=0.75Iinitial at Qc=0.5Qt, I3=0.5Iinitial at Qc=0.75Qt,respectively. It was shown that, compared with conventional constant current over-growth electroforming, the proposed process can significantly improve the surface quality and geometrical accuracy of the fabricated slits and can markedly enhance the achievement of the formed ultra-narrow slits. With the proposed process, slits with a width of down to 5 ± 0.1 µm and a surface roughness of less than 62.8 nm can be easily achieved. This can improve the determination sensitivity and linear range of the calibration curves of spectral imagers and food and chemical analysis instruments. Periodically reducing current over-growth electroforming is effective and advantageous in fabricating ultra-narrow precision slits.

10.
Materials (Basel) ; 15(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35329448

RESUMEN

Voronoi tessellations are shown to be statistically representative of polycrystalline microstructures, which have been widely accepted for the modeling of microstructures of metallurgic and ceramic materials. In this paper, a new implementation of the Voronoi diagram in Laguerre geometry is presented for the generation of numerical models of polycrystalline microstructures, where the size and shape of the grains can be controlled, and the 3D grain boundaries can be modeled with a specified thickness. The distribution of grain sizes in the models is fitted to a lognormal distribution, compared with the normal distribution in the Voronoi tessellation methods. Finally, statistical analyses of grain face and grain size distribution are performed with the models, and the macroscopic elastic properties of polycrystalline ceramic materials are simulated to verify the capability of the presented method.

11.
Micromachines (Basel) ; 11(2)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32054003

RESUMEN

A through-mask electrochemical micromachining process with a foamed cathode (foamed-cathode through-mask electrochemical micromachining (TMEMM)) has recently been proposed involving micro-scale surface microstructures with a high geometric consistency that are fabricated on the curved-surface workpiece. In this paper, to make the foamed-cathode TMEMM process more cost-efficient in the applications, significant modifications are made to this process and an upgraded version of the foamed-cathode TMEMM process is developed. In this modified process, the sandwich-like unit (including the foamed cathode, mask, and workpiece) is closely assembled by the magnetic field force instead of the conventionally-used mechanical force and is kept moving up-and-down inside the electrolyte, avoiding the use of the traditional pump-driven circulation for the electrode process. Experiments are carried out to evaluate the machining effect of this modified TMEMM for fabricating micro-dimples. The research results verify that this modified TMEMM process can produce highly uniform micro-dimples whose minimum CV (coefficient of variation) values in depth and in diameter are 5.4% and 1.9%, respectively, with smooth surfaces of the minimum Ra being 0.21-0.35 µm. These values are smaller than those previously reported. This results in the positive effects on the mass transfer driven by magnetohydrodynamic convection induced by the magnetic field within the interelectrode and the foamed electrode.

12.
Micromachines (Basel) ; 11(1)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936450

RESUMEN

A seamless thin-walled hollow metallic cylinder with array of micro-perforations is one of the key components for some products. Normally, these micro-perforations are formed by removing material from the given metallic hollow cylinder (pipe or tube) one by one or row by row. To efficiently and flexibly manufacture such a highly perforated hollow cylinder, this paper proposed a hybrid technique combining extrusion moulding process and electroforming process. In the hybrid technique, the extrusion moulding process was used to create polymer extrusion patterns on the outside surface of the given stainless steel (SS) pipe, and then the electroforming process was carried out using the SS pipe as the mandrel. The formation of the polymer extrusion patterns was simulated and extruding molding experiments were carried out to examine the feasibility of the various mandrels. Electroforming experiments were implemented to verify the achievement of the seamless perforated thin-walled hollow cylinder. It was found that five different types of polymer extrusion pattern were able to be obtained on the same extruding pipe just by adjusting some extruding conditions and parameters, and correspondingly four types of perforated hollow cylinder with different tapered orifices are produced after the electroforming process. The obtainable perforations are: perforation with double conic-orifices, perforation with hemispheric orifice and conic orifice, unidirectionally tapered perforation, and straight-walled perforation. The geometric profile of the extrusion patterns is highly dependent on the processing conditions and parameters. The proposed hybrid process represents a promising alternative process to fabricate seamless thin-walled perforated hollow metallic cylinder efficiently, flexibly, and with low cost.

13.
Micromachines (Basel) ; 10(12)2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783670

RESUMEN

High aspect ratio (HAR) ultrafine tapered holes (diameter ≤5 µm; AR ≥5) are the most important elements for some high-tech perforated metallic products, but they are very difficult to manufacture. Therefore, this paper proposes a nontraditional over-growth electroforming process. The formation mechanism of the HAR ultrafine tapered holes is investigated, and the factors controlling the geometric shape evolution are analyzed numerically. It was found that the geometric shape and dimensions of the holes are highly dependent on the diameter and thickness of the photoresist film patterns, but are hardly affected by the spacing between two neighboring patterns; the achievable diameter for a given hole depth becomes small with the increasing pattern diameter, but it becomes big with the increasing pattern thickness. These correlations can be well interpreted by the established two empirical equations that characterize the relationship between the minimum orifice of the tapered hole and the structural parameters of the photoresist film patterns previously formed on the substrate. Application of the fabricated 1500 tapered holes with 3-µm diameter and 17-AR as the nozzles of the medical precision nebulizer is also examined. The studies show that the over-growth electroforming process is highly applicable in fabricating the perforated metallic plate with HAR ultrafine tapered holes.

14.
Micromachines (Basel) ; 10(6)2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31212998

RESUMEN

Jet electrochemical machining (Jet-ECM) is a significant prospective electrochemical machining process for the fabrication of micro-sized features. Traditionally and normally, the Jet-ECM process is carried out with its electrolytic jet being vertically impinged downstream against the workpiece. Therefore, other jet orientations, including a vertically upstream orientation and a horizontal orientation, have rarely been adopted. In this study, three jet orientations were applied to electrolytic jet machining, and the effect of jet orientations on machining characteristics was systemically investigated. Horizontal jet orientation is of great benefit in achieving accurate micro-sized features with excellent surface quality with either a static jet or a scanning jet for the Jet-ECM. On the other hand, the Jet-ECM with a horizontal jet orientation has a smaller material removal rate (MMR) than the ones with vertical jet orientations, which have almost the same MMR. It was found that an enhancement of machining localization and a reduction of MMR for horizontal jet electrochemical machining primarily results from an improvement of the mass-transfer field. The horizontal orientation of the jet is beneficial for the Jet-ECM processes to improve machining accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...