Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Mater Au ; 4(2): 204-213, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38496043

RESUMEN

Highly efficient electrocatalysts for water electrolysis are crucial to the widespread commercialization of the technology and an important step forward toward a sustainable energy future. In this study, an alternative method for boosting the electrocatalytic activity toward the oxygen evolution reaction (OER) of a well-known electrocatalyst (iridium) is presented. Iridium nanoparticles (2.1 ± 0.2 nm in diameter) functionalized with chiral molecules were found to markedly enhance the activity of the OER when compared to unfunctionalized and achiral functionalized iridium nanoparticles. At a potential of 1.55 V vs Reference Hydrogen Electrode (RHE), chiral functionalized iridium nanoparticles exhibited an average 85% enhancement in activity with respect to unfunctionalized iridium nanoparticles compared to an average 13% enhancement for the achiral functionalized iridium nanoparticle. This activity enhancement is attributed to a spin-selective electron transfer mechanism taking place on the chiral functionalized catalysts, a characteristic induced by the chirality of the ligand. This alternative path for the OER drastically reduces the production of hydrogen peroxide, which was confirmed via a colorimetric method.

2.
Anal Bioanal Chem ; 412(1): 73-80, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31776644

RESUMEN

Although water has been extensively studied, not all of its unique properties have been fully understood. There is still controversy about the temperature at which hydrogen bonds are broken or weakened, producing the anomalous temperature dependence of many water properties. Different temperatures between 23 and 48 °C have been reported, but no study has scrutinized the reasons for this discrepancy. We suggest the determining role of pH in the alteration of the water anomaly temperature. We employed a luminescent europium trisbipyridine cryptate, which is highly sensitive to changes in the arrangement of water molecules and whose luminescence intensity and lifetime are not significantly influenced by variations over a broad pH range. Our results revealed an increase of the crossover temperature from circa 35 °C at pH 3.5 to circa 45 °C at pH 7 to 9, which explains the discrepancies of previous studies. The pH dependence of water anomaly temperature is an important property for a better understanding of water and water-based systems and applications.

3.
Anal Chem ; 91(22): 14561-14568, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31638767

RESUMEN

The quantification of cellular deoxyribonucleoside triphosphate (dNTP) levels is important for studying pathologies, genome integrity, DNA repair, and the efficacy of pharmacological drug treatments. Current standard methods, such as enzymatic assays or high-performance liquid chromatography, are complicated, costly, and labor-intensive, and alternative techniques that simplify dNTP quantification would present very useful complementary approaches. Here, we present a dNTP assay based on isothermal rolling circle amplification (RCA) and rapid time-gated Förster resonance energy transfer (TG-FRET), which used a commercial clinical plate reader system. Despite the relatively simple assay format, limits of detection down to a few picomoles of and excellent specificity for each dNTP against the other dNTPs, rNTPs, and dUTP evidenced the strong performance of the assay. Direct applicability of RCA-FRET to applied nucleic acid research was demonstrated by quantifying all dNTPs in CEM-SS leukemia cells with and without hydroxyurea or auranofin treatment. Both pharmacological agents could reduce the dNTP production in a time- and dose-dependent manner. RCA-FRET provides simple, rapid, sensitive, and specific quantification of intracellular dNTPs and has the potential to become an advanced tool for both fundamental and applied dNTP research.


Asunto(s)
Desoxirribonucleótidos/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Auranofina/farmacología , Secuencia de Bases , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Humanos , Hidroxiurea/farmacología , Límite de Detección , Prueba de Estudio Conceptual , Ribonucleótido Reductasas/antagonistas & inhibidores , Sensibilidad y Especificidad , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores
4.
Anal Chem ; 91(4): 3101-3109, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30657312

RESUMEN

The hybridization chain reaction (HCR) is a simple and sensitive method for quantifying nucleic acids. Current approaches cannot combine a washing-free sensing format with multiplexed target quantification at low concentrations, which would be highly desirable for detection both in solution and in situ. Here, we demonstrate the implementation of time-gated Förster resonance energy transfer (TG-FRET) between terbium donors and dye acceptors into HCR for multiplexed quantification of microRNAs (miR-20a and miR-21) and their DNA analogues. HCR-TG-FRET provided washing-free nucleic acid quantification with very low limits of detection down to 240 amol (1.7 pM) of microRNA and 123 amol (0.88 pM) of DNA. Efficient distinction from very homologous microRNAs demonstrated high target specificity. Multiplexing with a single measurement, a single excitation wavelength, and a single FRET pair allowed for a simultaneous quantification of miR-20a and miR-21 at concentrations between 30 and 300 pM from the same sample. HCR-TG-FRET showed similar performance for serum-free and serum-containing samples without the use of RNase inhibitors. Our results present a significant improvement in current HCR approaches regarding simplicity, sensitivity, and multiplexing. The versatile diagnostic performance of HCR-TG-FRET even in challenging biological environments presents an important advantage for advanced nucleic acid biosensing.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , MicroARNs/análisis , Hibridación de Ácido Nucleico , Factores de Tiempo
5.
ACS Nano ; 13(1): 505-514, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30508369

RESUMEN

DNA-nanoparticle conjugates are important tools in nanobiotechnology. Knowing the orientation, function, and length of DNA on nanoparticle surfaces at low nanomolar concentrations under physiological conditions is therefore of great interest. Here, we investigate the conformation of a 31 nucleotides (nt) long DNA attached to a semiconductor quantum dot (QD) via Förster resonance energy transfer (FRET) from Tb-DNA probes hybridized to different positions on the QD-DNA. Precise Tb-to-QD distance determination from 7 to 14 nm along 26 nt of the peptide-appended QD-DNA was realized by time-resolved FRET spectroscopy. The FRET nanoruler measured linear single-stranded (ssDNA) and double-stranded (dsDNA) extensions of ∼0.15 and ∼0.31 nm per base, reflecting the different conformations. Comparison with biomolecular modeling confirmed the denser conformation of ssDNA and a possibly more flexible orientation on the QD surface, whereas the dsDNA was fully extended with radial orientation. The temporally distinct photoluminescence decays of the different DNA-FRET configurations were used for prototypical DNA hybridization assays that demonstrated the large potential for extended temporal multiplexing. The extensive experimental and theoretical analysis of 11 different distances/configurations of the same QD-DNA conjugate provided important information on DNA conformation on nanoparticle surfaces and will be an important benchmark for the development and optimization of DNA-nanobiosensors.


Asunto(s)
ADN/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Puntos Cuánticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...