Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1125984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234176

RESUMEN

Respiratory disorders caused by allergy have been associated to bronchiolar inflammation leading to life-threatening airway narrowing. However, whether airway allergy causes alveolar dysfunction contributing to the pathology of allergic asthma remains unaddressed. To explore whether airway allergy causes alveolar dysfunction that might contribute to the pathology of allergic asthma, alveolar structural and functional alterations were analyzed during house dust mite (HDM)-induced airway allergy in mice, by flow cytometry, light and electron microscopy, monocyte transfer experiments, assessment of intra-alveolarly-located cells, analysis of alveolar macrophage regeneration in Cx3cr1 cre:R26-yfp chimeras, analysis of surfactant-associated proteins, and study of lung surfactant biophysical properties by captive bubble surfactometry. Our results demonstrate that HDM-induced airway allergic reactions caused severe alveolar dysfunction, leading to alveolar macrophage death, pneumocyte hypertrophy and surfactant dysfunction. SP-B/C proteins were reduced in allergic lung surfactant, that displayed a reduced efficiency to form surface-active films, increasing the risk of atelectasis. Original alveolar macrophages were replaced by monocyte-derived alveolar macrophages, that persisted at least two months after the resolution of allergy. Monocyte to alveolar macrophage transition occurred through an intermediate stage of pre-alveolar macrophage and was paralleled with translocation into the alveolar space, Siglec-F upregulation, and downregulation of CX3CR1. These data support that the severe respiratory disorders caused by asthmatic reactions not only result from bronchiolar inflammation, but additionally from alveolar dysfunction compromising an efficient gas exchange.


Asunto(s)
Asma , Hipersensibilidad , Surfactantes Pulmonares , Ratones , Animales , Macrófagos Alveolares/metabolismo , Hipersensibilidad/complicaciones , Asma/metabolismo , Inflamación/complicaciones , Tensoactivos
2.
Immunity ; 46(6): 1059-1072.e4, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636955

RESUMEN

Neutrophils play a crucial role in defense against systemic candidiasis, a disease associated with a high mortality rate in patients receiving immunosuppressive therapy, although the early immune mechanisms that boost the candidacidal activity of neutrophils remain to be defined in depth. Here, we used a murine model of systemic candidiasis to explore the role of inflammatory Ly6Chigh monocytes in NK cell-mediated neutrophil activation during the innate immune response against C. albicans. We found that efficient anti-Candida immunity required a collaborative response between the spleen and kidney, which relied on type I interferon-dependent IL-15 production by spleen inflammatory Ly6Chigh monocytes to drive efficient activation and GM-CSF release by spleen NK cells; this in turn was necessary to boost the Candida killing potential of kidney neutrophils. Our findings unveil a role for IL-15 as a critical mediator in defense against systemic candidiasis and hold promise for the design of IL-15-based antifungal immunotherapies.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Inmunoterapia/métodos , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Monocitos/inmunología , Neutrófilos/inmunología , Animales , Antígenos Ly/metabolismo , Candidiasis/terapia , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inmunoterapia/tendencias , Interferón gamma/metabolismo , Riñón/inmunología , Activación de Linfocitos , Ratones , Monocitos/microbiología , Activación Neutrófila , Bazo/inmunología
3.
J Control Release ; 214: 12-22, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26188153

RESUMEN

Modern subunit vaccines require the development of new adjuvant strategies. Recently, we showed that CpG-ODN formulated with a liquid crystal nanostructure formed by self-assembly of 6-O-ascorbyl palmitate (Coa-ASC16) is an attractive system for promoting an antigen-specific immune response to weak antigens. Here, we showed that after subcutaneous injection of mice with near-infrared fluorescent dye-labeled OVA antigen formulated with Coa-ASC16, the dye-OVA was retained at the injection site for a longer period than when soluble dye-OVA was administered. Coa-ASC16 alone elicited a local inflammation, but how this material triggers this response has not been described yet. Although it is known that some materials used as a platform are not immunologically inert, very few studies have directly focused on this topic. In this study, we explored the underlying mechanisms concerning the interaction between Coa-ASC16 and the immune system and we found that the whole inflammatory response elicited by Coa-ASC16 (leukocyte recruitment and IL-1ß, IL-6 and IL-12 production) was dependent on the MyD88 protein. TLR2, TLR4, TLR7 and NLRP3-inflammasome signaling were not required for induction of this inflammatory response. Coa-ASC16 induced local release of self-DNA, and in TLR9-deficient mice IL-6 production was absent. In addition, Coa-ASC16 revealed an intrinsic adjuvant activity which was affected by MyD88 and IL-6 absence. Taken together these results indicate that Coa-ASC16 used as a vaccine platform is effective due to the combination of the controlled release of antigen and its intrinsic pro-inflammatory activity. Understanding how Coa-ASC16 works might have significant implications for rational vaccine design.


Asunto(s)
Adyuvantes Inmunológicos/química , Antígenos/administración & dosificación , Ácido Ascórbico/análogos & derivados , Factor 88 de Diferenciación Mieloide/metabolismo , Vacunas/administración & dosificación , Animales , Ácido Ascórbico/química , Preparaciones de Acción Retardada , Humanos , Inflamasomas/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/patología , Interleucinas/biosíntesis , Leucocitos/efectos de los fármacos , Cristales Líquidos , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Ovalbúmina/inmunología , Receptor Toll-Like 9/biosíntesis , Receptor Toll-Like 9/genética , Receptores Toll-Like/biosíntesis
4.
J Immunol ; 194(12): 6090-101, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25972472

RESUMEN

Despite recent evidence on the involvement of CD81 in pathogen binding and Ag presentation by dendritic cells (DCs), the molecular mechanism of how CD81 regulates immunity during infection remains to be elucidated. To investigate the role of CD81 in the regulation of defense mechanisms against microbial infections, we have used the Listeria monocytogenes infection model to explore the impact of CD81 deficiency in the innate and adaptive immune response against this pathogenic bacteria. We show that CD81(-/-) mice are less susceptible than wild-type mice to systemic Listeria infection, which correlates with increased numbers of inflammatory monocytes and DCs in CD81(-/-) spleens, the main subsets controlling early bacterial burden. Additionally, our data reveal that CD81 inhibits Rac/STAT-1 activation, leading to a negative regulation of the production of TNF-α and NO by inflammatory DCs and the activation of cytotoxic T cells by splenic CD8α(+) DCs. In conclusion, this study demonstrates that CD81-Rac interaction exerts an important regulatory role on the innate and adaptive immunity against bacterial infection and suggests a role for CD81 in the development of novel therapeutic targets during infectious diseases.


Asunto(s)
Mediadores de Inflamación/metabolismo , Listeriosis/inmunología , Listeriosis/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Tetraspanina 28/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Diferenciación Celular/inmunología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Modelos Animales de Enfermedad , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Listeria/inmunología , Listeriosis/genética , Activación de Linfocitos , Ratones , Ratones Noqueados , Óxido Nítrico/biosíntesis , Fagocitosis , Fosforilación , Unión Proteica , Receptor de Interferón alfa y beta/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Tetraspanina 28/genética , Factor de Necrosis Tumoral alfa/biosíntesis
5.
J Allergy Clin Immunol ; 132(6): 1409-19, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24139608

RESUMEN

BACKGROUND: Whereas recent research has characterized the mechanism by which dendritic cells (DCs) induce T(H)1/T(H)17 responses, the functional specialization enabling DCs to polarize T(H)2 responses remains undefined. Because IL-4 is essential during T(H)2 responses not only by acting on CD4(+) T cells through the activation of GATA-3 but also by regulating IgE class-switching, epithelial cell permeability, and muscle contractility, we hypothesized that IL-4 could also have a role in the conditioning of DCs during T(H)2 responses. OBJECTIVE: We sought to analyze whether IL-4 exerts an immunomodulatory function on DCs during their differentiation, leading to their functional specialization for the induction of T(H)2 responses. METHODS: Monocyte-derived DCs (moDCs) conditioned by IL-4 during their differentiation (IL-4-conditioned moDCs [IL-4-moDCs]) were analyzed for T(H)1-polarizing/inflammatory cytokine production in response to Toll-like receptor stimulation. The acetylation level of the promoters of the genes encoding these cytokines was analyzed by using chromatin immunoprecipitation. Gene expression profiling of IL-4-moDCs was defined by using mouse genome microarrays. IL-4-moDCs were tested for their capacity to induce house dust mite-mediated allergic reactions. RESULTS: Our data suggest that IL-4 inhibits T(H)1-polarizing/inflammatory cytokine gene expression on IL-4-moDCs through the deacetylation of the promoters of these genes, leading to their transcriptional repression. Microarray analyses confirmed that IL-4 upregulated T(H)2-related genes as eosinophil-associated ribonucleases, eosinophil/basophil chemokines, and M2 genes. IL-4 licensed moDCs for the induction of T(H)2 responses, causing house dust mite-mediated allergic airway inflammation. CONCLUSION: This study describes a new role for IL-4 by demonstrating that moDCs are conditioned by IL-4 for the induction of T(H)2 responses by blocking T(H)1-polarizing/inflammatory cytokine production through histone hypoacetylation and upregulating T(H)2-related genes.


Asunto(s)
Células Dendríticas/inmunología , Hipersensibilidad/inmunología , Interleucina-4/metabolismo , Células TH1/inmunología , Células Th2/inmunología , Acetilación , Animales , Antígenos Dermatofagoides/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-4/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Regiones Promotoras Genéticas/genética , Pyroglyphidae
6.
J Virol ; 86(10): 5926-30, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22398284

RESUMEN

Influenza A viruses containing the promoter mutations G3A/C8U in a given segment express increased levels of the corresponding viral protein during infection due to increased levels of mRNA or cRNA species. The replication of these recombinant viruses is attenuated, and they have an enhanced shedding of noninfectious particles and are incapable of antagonizing interferon (IFN) effectively. Our findings highlight the possibility of increasing influenza virus protein expression and the need for a delicate balance between influenza viral replication, protein expression, and assembly.


Asunto(s)
Regulación Viral de la Expresión Génica , Virus de la Influenza A/enzimología , Virus de la Influenza A/genética , Gripe Humana/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Humanos , Virus de la Influenza A/fisiología , Mutación , Regiones Promotoras Genéticas , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA