Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Microbiol ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38342794

RESUMEN

Quorum sensing (QS) is pivotal in coordinating virulence factors and biofilm formation in various pathogenic bacteria, making it a prime target for disrupting bacterial communication. Pseudomonas aeruginosa is a member of the "ESKAPE" group of bacterial pathogens known for their association with antimicrobial resistance and biofilm formation. The current antibiotic arsenal falls short of addressing biofilm-related infections effectively, highlighting the urgent need for novel therapeutic agents. In this study, we explored the anti-QS and anti-biofilm properties of theophylline against two significant pathogens, Chromobacterium violaceum and P. aeruginosa. The production of violacein, pyocyanin, rhamnolipid, and protease was carried out, along with the evaluation of biofilm formation through methods including crystal violet staining, triphenyl tetrazolium chloride assay, and fluorescence microscopy. Furthermore, computational analyses were conducted to predict the targets of theophylline in the QS pathways of P. aeruginosa and C. violaceum. Our study demonstrated that theophylline effectively inhibits QS activity and biofilm formation in C. violaceum and P. aeruginosa. In P. aeruginosa, theophylline inhibited the production of key virulence factors, including pyocyanin, rhamnolipid, protease, and biofilm formation. The computational analyses suggest that theophylline exhibits robust binding affinity to CviR in C. violaceum and RhlR in P. aeruginosa, key participants in the QS-mediated biofilm pathways. Furthermore, theophylline also displays promising interactions with LasR and QscR in P. aeruginosa. Our study highlights theophylline as a versatile anti-QS agent and offers a promising avenue for future research to develop novel therapeutic strategies against biofilm-associated infections.

2.
Biofouling ; 39(9-10): 948-961, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37975308

RESUMEN

Biofilm refers to a community of microorganisms that adhere to a substrate and play a crucial role in microbial pathogenesis and developing infections associated with medical devices. Enterobacter hormaechei and Klebsiella pneumoniae are classified as significant nosocomial pathogens within the ESKAPE category and cause diverse infections. In addition to their reputation as prolific biofilm formers, these pathogens are increasingly becoming drug-resistant and pose a substantial threat to the healthcare setting. Due to the inherent resistance of biofilms to conventional therapies, novel strategies are imperative for effectively controlling E. hormaechei and K. pneumoniae biofilms. This study aimed to assess the anti-biofilm activity of gallic acid (GA) against E. hormaechei and K. pneumoniae. The results of biofilm quantification assays demonstrated that GA exhibited significant antibiofilm activity against E. hormaechei and K. pneumoniae at concentrations of 4 mg mL-1, 2 mg mL-1, 1 mg mL-1, and 0.5 mg mL-1. Similarly, GA exhibited a dose-dependent reduction in violacein production, a QS-regulated purple pigment, indicating its ability to suppress violacein production and disrupt QS mechanisms in Chromobacterium violaceum. Additionally, computational tools were utilized to identify the potential target involved in the biofilm formation pathway. The computational analysis further indicated the strong binding affinity of GA to essential biofilm regulators, MrkH and LuxS, suggesting its potential in targeting the c-di-GMP and quorum sensing (QS) pathways to hinder biofilm formation in K. pneumoniae. These compelling findings strongly advocate GA as a promising drug candidate against biofilm-associated infections caused by E. hormaechei and K. pneumoniae.


Asunto(s)
Biopelículas , Enterobacter , Klebsiella pneumoniae , Ácido Gálico/farmacología , Ácido Gálico/metabolismo , Percepción de Quorum , Antibacterianos/farmacología , Antibacterianos/química
3.
Curr Microbiol ; 81(1): 23, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019310

RESUMEN

Pseudomonas aeruginosa is an opportunistic bacteria causing severe and life-threatening infections in individuals with weakened immune systems. P. aeruginosa forms antibiotic-resistant biofilms, rendering it challenging to treat; hence, alternate therapies are required to eliminate it. Treatment of infections using a combination of drugs is gaining momentum to combat drug-resistant pathogens, including P. aeruginosa. This study explores the synergistic effects of Thymol in combination with Ciprofloxacin, Amikacin and Colistin against planktonic cells and biofilm of P. aeruginosa. Thymol in combination with Ciprofloxacin yields the fractional inhibitory concentration index values 0.156 and 0.375 in P. aeruginosa strains, GC14 and ATCC 9027, respectively, highlighting a robust synergistic effect on both the planktonic and biofilm of P. aeruginosa. The results showed that Thymol (512 µg/mL) and Ciprofloxacin (0.125 µg/mL) were the most effective combination with 95 and 93.5% total biofilm inhibition in GC14 and PA27, respectively, compared to the Thymol (512 µg/mL) and Ciprofloxacin (0.125 µg/mL) alone. Our findings suggest that the combinations of Thymol and Ciprofloxacin may be a potential therapeutic strategy to address the issue of infections caused by P. aeruginosa biofilms.


Asunto(s)
Ciprofloxacina , Pseudomonas aeruginosa , Humanos , Ciprofloxacina/farmacología , Timol/farmacología , Antibacterianos/farmacología , Biopelículas , Plancton
4.
J Biomol Struct Dyn ; : 1-11, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37485898

RESUMEN

Biofilm is a community of microorganisms attached to the substrate and plays a significant role in microbial pathogenesis and medical device-related infection. Pseudomonas aeruginosa (PA) is a highly infectious gram-negative opportunistic biofilm-forming bacterium with high antibiotic resistance. Several reports underscore the antimicrobial activity of natural and synthetic food coloring agents, including carmoisine, turmeric dye, red amaranth dye, and phloxine B. However, their ability to suppress the PA biofilm is not clearly understood. Carmoisine is a red-colored synthetic azo dye containing naphthalene subunits and sulfonic groups and is widely used as a food coloring agent. This study investigated the antibiofilm potential and possible mechanism of biofilm inhibition by carmoisine against PA. Computational studies through molecular docking revealed that carmoisine strongly binds to QS regulator LasR (-12.7) and relatively less strongly but significantly with WspR (-6.9). Further analysis of the docked LasR-carmoisine complex using 100 ns MD simulation (Desmond, Schrödinger) validated the bonding strength and stability. Crystal violet assay, triphenyl tetrazolium chloride salt assay, and confocal microscopic studies were adopted for biofilm quantification, and the results indicated the dose-dependent antibiofilm activity of carmoisine against PA. We hypothesise that the carmoisine-mediated reduction of biofilm in PA is due to its interaction with LasR and interference with the QS system. The computational and biochemical analysis of another compound, 1,2-naphthoquinone-4-sulphonic acid, reiterated the role of the naphthalene ring in biofilm inhibition. Hence, this work will pave the way for the future discovery of antibiofilm drugs based on naphthalene ring-based lead compounds.Communicated by Ramaswamy H. Sarma.

5.
J Cell Biochem ; 123(4): 782-797, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35106828

RESUMEN

Cancer cells grown as 3D-structures are better models for mimicking in vivo conditions than the 2D-culture systems employable in drug discovery applications. Cell cycle and cell death are important determinants for preclinical drug screening and tumor growth studies in laboratory conditions. Though several 3D-models and live-cell compatible approaches are available, a method for simultaneous real-time detection of cell cycle and cell death is required. Here we demonstrate a high-throughput adaptable method using genetically encoded fluorescent probes for the real-time quantitative detection of cell death and cell cycle. The cell-cycle indicator cdt1-Kusabira orange (KO) is stably integrated into cancer cells and further transfected with the Fluorescence Resonance Energy Transfer-based ECFP-DEVD-EYFP caspase activation sensor. The nuclear cdt1-KO expression serves as the readout for cell-cycle, and caspase activation is visualized by ECFP/EYFP ratiometric imaging. The image-based platform allowed imaging of growing spheres for prolonged periods in 3D-culture with excellent single-cell resolution through confocal microscopy. High-throughput screening (HTS) adaptation was achieved by targeting the caspase-sensor at the nucleus, which enabled the quantitation of cell death in 3D-models. The HTS using limited compound libraries, identified two lead compounds that induced caspase-activation both in 2D and 3D-cultures. This is the first report of an approach for noninvasive stain-free quantitative imaging of cell death and cell cycle with potential drug discovery applications.


Asunto(s)
Apoptosis , Transferencia Resonante de Energía de Fluorescencia , Apoptosis/fisiología , Caspasas/genética , Muerte Celular , División Celular , Transferencia Resonante de Energía de Fluorescencia/métodos
6.
Toxicol Lett ; 326: 23-30, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32109534

RESUMEN

Simultaneous detection of autophagy and apoptosis is important in drug discovery and signaling studies. Here we report, a real-time reporter cell line for the simultaneous detection of apoptosis and autophagy at single-cell level employing stable integration of two fluorescent protein reporters of apoptosis and autophagy. Cells stably expressing EGFP-LC3 fusion was developed initially as a marker for autophagy and subsequently stably expressed with inter-mitochondrial membrane protein SMAC with RFP fusion to detect mitochondrial permeabilization event of apoptosis. The cell lines faithfully reported the LC3 punctae formation and release of intermembrane proteins in response to diverse apoptotic and autophagic stimuli.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Genes Reporteros/efectos de los fármacos , Proteínas Fluorescentes Verdes/efectos de los fármacos , Células HeLa/efectos de los fármacos , Apoptosis/fisiología , Autofagia/fisiología , Línea Celular Tumoral/fisiología , Genes Reporteros/fisiología , Proteínas Fluorescentes Verdes/fisiología , Células HeLa/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...