Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Planta ; 258(5): 93, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37796356

RESUMEN

MAIN CONCLUSION: Simultaneous genome editing of the two homeologous LCYe and ZEP genes of Nicotiana benthamiana results in plants in which all xanthophylls are replaced by zeaxanthin. Plant carotenoids act both as photoreceptors and photoprotectants in photosynthesis and as precursors of apocarotenoids, which include signaling molecules such as abscisic acid (ABA). As dietary components, the xanthophylls lutein and zeaxanthin have photoprotective functions in the human macula. We developed transient and stable combinatorial genome editing methods, followed by direct LC-MS screening for zeaxanthin accumulation, for the simultaneous genome editing of the two homeologous Lycopene Epsilon Cyclase (LCYe) and the two Zeaxanthin Epoxidase (ZEP) genes present in the allopolyploid Nicotiana benthamiana genome. Editing of the four genes resulted in plants in which all leaf xanthophylls were substituted by zeaxanthin, but with different ABA levels and growth habits, depending on the severity of the ZEP1 mutation. In high-zeaxanthin lines, the abundance of the major photosystem II antenna LHCII was reduced with respect to wild-type plants and the LHCII trimeric state became unstable upon thylakoid solubilization. Consistent with the depletion in LHCII, edited plants underwent a compensatory increase in PSII/PSI ratios and a loss of the large-size PSII supercomplexes, while the level of PSI-LHCI supercomplex was unaffected. Reduced activity of the photoprotective mechanism NPQ was shown in high-zeaxanthin plants, while PSII photoinhibition was similar for all genotypes upon exposure to excess light, consistent with the antioxidant and photoprotective role of zeaxanthin in vivo.


Asunto(s)
Luteína , Nicotiana , Humanos , Zeaxantinas , Nicotiana/genética , Xantófilas , Genotipo , Ácido Abscísico
2.
Metabolites ; 13(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37367887

RESUMEN

Crocins are glycosylated apocarotenoids with strong coloring power and anti-oxidant, anticancer, and neuro-protective properties. We previously dissected the saffron crocin biosynthesis pathway, and demonstrated that the CsCCD2 enzyme, catalyzing the carotenoid cleavage step, shows a strong preference for the xanthophyll zeaxanthin in vitro and in bacterio. In order to investigate substrate specificity in planta and to establish a plant-based bio-factory system for crocin production, we compared wild-type Nicotiana benthamiana plants, accumulating various xanthophylls together with α- and ß-carotene, with genome-edited lines, in which all the xanthophylls normally accumulated in leaves were replaced by a single xanthophyll, zeaxanthin. These plants were used as chassis for the production in leaves of saffron apocarotenoids (crocins, picrocrocin) using two transient expression methods to overexpress CsCCD2: agroinfiltration and inoculation with a viral vector derived from tobacco etch virus (TEV). The results indicated the superior performance of the zeaxanthin-accumulating line and of the use of the viral vector to express CsCCD2. The results also suggested a relaxed substrate specificity of CsCCD2 in planta, cleaving additional carotenoid substrates.

3.
Plant Physiol ; 188(3): 1469-1482, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34919714

RESUMEN

Annatto (Bixa orellana) is a perennial shrub native to the Americas, and bixin, derived from its seeds, is a methoxylated apocarotenoid used as a food and cosmetic colorant. Two previous reports claimed to have isolated the carotenoid cleavage dioxygenase (CCD) responsible for the production of the putative precursor of bixin, the C24 apocarotenal bixin dialdehyde. We re-assessed the activity of six Bixa CCDs and found that none of them produced substantial amounts of bixin dialdehyde in Escherichia coli. Unexpectedly, BoCCD4-3 cleaved different carotenoids (lycopene, ß-carotene, and zeaxanthin) to yield the C20 apocarotenal crocetin dialdehyde, the known precursor of crocins, which are glycosylated apocarotenoids accumulated in saffron stigmas. BoCCD4-3 lacks a recognizable transit peptide but localized to plastids, the main site of carotenoid accumulation in plant cells. Expression of BoCCD4-3 in Nicotiana benthamiana leaves (transient expression), tobacco (Nicotiana tabacum) leaves (chloroplast transformation, under the control of a synthetic riboswitch), and in conjunction with a saffron crocetin glycosyl transferase, in tomato (Solanum lycopersicum) fruits (nuclear transformation) led to high levels of crocin accumulation, reaching the highest levels (>100 µg/g dry weight) in tomato fruits, which also showed a crocin profile similar to that found in saffron, with highly glycosylated crocins as major compounds. Thus, while the bixin biosynthesis pathway remains unresolved, BoCCD4-3 can be used for the metabolic engineering of crocins in a wide range of different plant tissues.


Asunto(s)
Bixaceae/genética , Bixaceae/metabolismo , Carotenoides/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Redes y Vías Metabólicas
4.
Front Plant Sci ; 10: 1005, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31440267

RESUMEN

Single primer enrichment technology (SPET) is a new, robust, and customizable solution for targeted genotyping. Unlike genotyping by sequencing (GBS), and like DNA chips, SPET is a targeted genotyping technology, relying on the sequencing of a region flanking a primer. Its reliance on single primers, rather than on primer pairs, greatly simplifies panel design, and allows higher levels of multiplexing than PCR-based genotyping. Thanks to the sequencing of the regions surrounding the target SNP, SPET allows the discovery of thousands of closely linked, novel SNPs. In order to assess the potential of SPET for high-throughput genotyping in plants, a panel comprising 5k target SNPs, designed both on coding regions and introns/UTRs, was developed for tomato and eggplant. Genotyping of two panels composed of 400 tomato and 422 eggplant accessions, comprising both domesticated material and wild relatives, generated a total of 12,002 and 30,731 high confidence SNPs, respectively, which comprised both target and novel SNPs in an approximate ratio of 1:1.6, and 1:5.5 in tomato and eggplant, respectively. The vast majority of the markers was transferrable to related species that diverged up to 3.4 million years ago (Solanum pennellii for tomato and S. macrocarpon for eggplant). Maximum Likelihood phylogenetic trees and PCA outputs obtained from the whole dataset highlighted genetic relationships among accessions and species which were congruent with what was previously reported in literature. Better discrimination among domesticated accessions was achieved by using the target SNPs, while better discrimination among wild species was achieved using the whole SNP dataset. Our results reveal that SPET genotyping is a robust, high-throughput technology for genetic fingerprinting, with a high degree of cross-transferability between crops and their cultivated and wild relatives, and allows identification of duplicates and mislabeled accessions in genebanks.

5.
Phytochemistry ; 167: 112082, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31421542

RESUMEN

Labdane diterpenes (LDs), and especially sclareol, are important feedstocks for the pharmaceutical and cosmetic industries, and therefore several lines of research have led to their heterologous production in non-photosynthetic microbes and higher plants. The potential of microalgae as bioreactors of natural products has been established for a variety of bioactive metabolites, including terpenes. In this work, a codon optimized sequence encoding a key plant labdane-type diterpene (LD) cyclase, copal-8-ol diphosphate synthase from Cistus creticus (CcCLS), was introduced into the chloroplast genome of Chlamydomonas reinhardtii. Of 49 transplastomic algal lines, 12 produced variable amounts of four LD compounds, namely ent-manoyl oxide, sclareol, labda-13-ene-8α,15-diol and ent-13-epi-manoyl oxide. The total LD concentrations measured in the transplastomic lines reached 1.172 ±â€¯0.05 µg/mg cell DW for the highest overall producer, while the highest yield for sclareol was 0.038 ±â€¯0.001 µg/mg cell DW. Thus, transplastomic expression of a key plant labdane diterpene cyclase in the C. reinhardtii chloroplast genome enabled the production of important plant-specific LD compounds.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Diterpenos/metabolismo , Ingeniería Genética , Transferasas Alquil y Aril/genética , Cloroplastos/genética , Cistus/enzimología , Cistus/genética , Diterpenos/química , Proteínas de Plantas/genética , Transformación Genética
6.
BMC Biotechnol ; 18(1): 11, 2018 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-29454346

RESUMEN

BACKGROUND: Chlamydomonas reinhardtii is an unicellular green alga used for functional genomics studies and heterologous protein expression. A major hindrance in these studies is the low level and instability of expression of nuclear transgenes, due to their rearrangement and/or silencing over time. RESULTS: We constructed dedicated vectors for Agrobacterium-mediated transformation carrying, within the T-DNA borders, the Paromomycin (Paro) selectable marker and an expression cassette containing the Luciferase (Luc) reporter gene. These vectors and newly developed co-cultivation methods were used to compare the efficiency, stability and insertion sites of Agrobacterium- versus electroporation-mediated transformation. The influence of different transformation methods, of the cell wall, of the virulence of different Agrobacterium strains, and of transgene orientation with respect to T-DNA borders were assessed. False positive transformants were more frequent in Agrobacterium-mediated transformation compared to electroporation, compensating for the slightly lower proportion of silenced transformants observed in Agrobacterium-mediated transformation than in electroporation. The proportion of silenced transformants remained stable after 20 cycles of subculture in selective medium. Next generation sequencing confirmed the nuclear insertion points, which occurred in exons or untraslated regions (UTRs) for 10 out of 10 Agrobacterium-mediated and 9 out of 13 of electroporation-mediated insertions. Electroporation also resulted in higher numbers of insertions at multiple loci. CONCLUSIONS: Due to its labor-intensive nature, Agrobacterium transformation of Chlamydomonas does not present significant advantages over electroporation, with the possible exception of its use in insertional mutagenesis, due to the higher proportion of within-gene, single-locus insertions. Our data indirectly support the hypothesis that rearrangement of transforming DNA occurs in the Chlamydomonas cell, rather than in the extracellular space as previously proposed.


Asunto(s)
Agrobacterium/genética , Chlamydomonas reinhardtii/genética , Electroporación/métodos , Transformación Genética , ADN Bacteriano , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Marcadores Genéticos , Vectores Genéticos , Genoma de Planta , Luciferasas de Renilla/genética , Plantas Modificadas Genéticamente , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...