RESUMEN
INTRODUCTION: Mild traumatic brain injury (mTBI) represents a major public health concern and affects millions of people worldwide every year. Diagnosis mainly relies on clinical criteria and computed tomography (CT) scans. GFAP (glial fibrillary acidic protein) and UCH-L1 (ubiquitin carboxyl-terminal hydrolase-L1) have been recently studied as potential biomarkers of mTBI. This study retrospectively evaluated the possible use of these combined biomarkers as negative predictors for excluding brain injuries in patients with suspected mTBI in the emergency department. METHODS: Adult patients (n = 130) enrolled at Tor Vergata University Hospital (Rome, Italy), consecutively registered at the triage of the emergency department between October 2022 and January 2023, with non-penetrating TBI and Glasgow Coma Scale (GCS) score of 13-15, were considered. All eligible patients underwent intracranial CT scans and blood tests, within 12 h after trauma, for GFAP and UCH-L1 serum concentrations. RESULTS: Intracranial CT detected injuries in only seven patients (5%); GFAP and UCH-L1 tested positive in 96 patients and negative in 34 patients (74% vs. 26%). Combined biomarkers had a sensitivity equal to 1.00 (95% CI 0.64-1.00) and a negative predictive value (NPV) of 1.00 (0.99-1.00) in mTBI diagnosis with a negative CT. CONCLUSIONS: Combined laboratory tests for GFAP and UCH-L1 biomarkers might play a potential clinical role in avoiding unnecessary head CT scans after mTBI in emergency departments.
RESUMEN
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a significant impact on global health, with severe cases often characterized by a worsening cytokine storm. Since it has been described that the NF-κB signaling pathway, regulated by microRNAs, could play a pivotal role in the inflammatory response, in this study, the role of miR-9 in modulating NF-κB signaling and inflammatory cytokine expression in COVID-19 patients was investigated. This observational retrospective single-center study included 41 COVID-19 patients and 20 healthy controls. Serum samples were analyzed for miR-9, NF-κB, and IκBα expression levels using RT-PCR. The expression levels and production of pro-inflammatory cytokines IL-6, IL-1ß, and TNF-α were measured using RT-PCR and ELISA. Statistical analyses, including correlation and regression, were conducted to explore relationships between these variables. COVID-19 patients, particularly non-survivors, exhibited significantly higher miR-9 and NF-κB levels compared to controls. A strong positive correlation was found between miR-9 and NF-κB expression (r = 0.813, p < 0.001). NF-κB levels were significantly correlated with IL-6 (r = 0.971, p < 0.001), IL-1ß (r = 0.968, p < 0.001), and TNF-α (r = 0.968, p < 0.001). Our findings indicate that miR-9 regulates NF-κB signaling and inflammation in COVID-19. Elevated miR-9 levels in non-survivors suggest its potential as a severity biomarker. While COVID-19 cases have decreased, targeting miR-9 and NF-κB could improve outcomes for other inflammatory conditions, including autoimmune diseases, highlighting the need for continued research in this area.
Asunto(s)
COVID-19 , Citocinas , MicroARNs , FN-kappa B , SARS-CoV-2 , Transducción de Señal , Humanos , MicroARNs/genética , MicroARNs/sangre , MicroARNs/metabolismo , COVID-19/genética , COVID-19/sangre , COVID-19/metabolismo , COVID-19/virología , FN-kappa B/metabolismo , FN-kappa B/genética , Masculino , Femenino , Persona de Mediana Edad , Citocinas/sangre , Citocinas/metabolismo , Citocinas/genética , Adulto , Estudios Retrospectivos , AncianoRESUMEN
Thalassemic diseases are characterized by a reduced (ß+) or absent (ß0) synthesis of the globin chains of hemoglobin (Hb) due to genetic mutations. ß-thalassemia was more frequent in the Mediterranean area, but now it is diffused worldwide. Three possible genetic forms can be distinguished: ß0/ß0, the most severe (Cooley's disease); ß0/ß+ of intermediate severity; ß+/ß+ associated with ß-thalassemia intermedia or minor. Recently, a clinical non-genetic classification has been proposed: transfusion-dependent thalassemia (TDT), requiring regular lifetime blood transfusions, and non-transfusion-dependent thalassemia (NTDT), requiring occasional transfusions to manage acute cases. In this report, we studied a patient whose blood count indicated a severe anemia but also showed thrombocytosis, leukocytosis, and an elevated number of nucleated red blood cells (NRBC). These altered blood parameters suggested initially a possible diagnosis of hemoglobinopathy or myeloproliferative syndrome. The molecular and genetic analyses demonstrated the presence of HbF (5.3%) and HbA2 (7.7%) and the presence of the homozygote mutation (IVS1.6T>C) in the ß-globin gene. According to these data, a diagnosis of ß-thalassemia intermedia form has been proposed. Nevertheless, the clinical condition, the presence of thrombocytosis, leukocytosis, an elevated number of NRBC, and the frequent blood transfusions lead to reclassification of the patient as TDT subject. Consequently, this result suggests that a unique genotype-phenotype correlation is not possible in the presence of ß+mutations since other concomitant pathologies can exacerbate the disease.
RESUMEN
OTX homeobox genes have been extensively studied for their role in development, especially in neuroectoderm formation. Recently, their expression has also been reported in adult physiological and pathological tissues, including retina, mammary and pituitary glands, sinonasal mucosa, in several types of cancer, and in response to inflammatory, ischemic, and hypoxic stimuli. Reactivation of OTX genes in adult tissues supports the notion of the evolutionary amplification of functions of genes by varying their temporal expression, with the selection of homeobox genes from the "toolbox" to drive or contribute to different processes at different stages of life. OTX involvement in pathologies points toward these genes as potential diagnostic and/or prognostic markers as well as possible therapeutic targets.
Asunto(s)
Genes Homeobox , Factores de Transcripción Otx , Factores de Transcripción Otx/genética , Retina/metabolismo , Proteínas de Homeodominio/genética , Regulación del Desarrollo de la Expresión GénicaRESUMEN
The use of vaccines has allowed the containment of coronavirus disease 2019 (COVID-19) at a global level. The present work aims to add data on vaccination by evaluating the level of neutralizing antibodies in individuals who have received a three-vaccination series. For this purpose, we ran a surveillance program directed at measuring the level of IgG Abs against the Receptor Binding Domain (RBD) and surrogate virus neutralizing Ab (sVNT) anti-SARS-CoV-2 in the serum of individuals undergoing vaccination. This study was performed on employees from the University of Rome Tor Vergata and healthcare workers from the University Hospital who received the Vaxzevria vaccine (n = 56) and Comirnaty vaccine (n = 113), respectively. After the second dose, an increase in both RBD and sVNT Ab values was registered. In individuals who received the Comirnaty vaccine, the antibody titer was about one order of magnitude higher after 6 months from the first dose. All participants in this study received the Comirnaty vaccine as the third dose, which boosted the antibody response. Five months after the third dose, nearly one year from the first injection, the antibody level was >1000 BAU/mL (binding antibody units/mL). According to the values reported in the literature conferring protection against SARS-CoV-2 infection, our data indicate that individuals undergoing three vaccine doses present a low risk of infection.
RESUMEN
BACKGROUND: It has been reported that mid-regional proadrenomedullin (MR-proADM) could be considered a useful tool to stratify the mortality risk in COVID-19 patients upon admission to the emergency department (ED). During the COVID-19 outbreak, computed tomography (CT) scans were widely used for their excellent sensitivity in diagnosing pneumonia associated with SARS-CoV-2 infection. However, the possible role of CT score in the risk stratification of COVID-19 patients upon admission to the ED is still unclear. AIM: The main objective of this study was to assess if the association of the CT findings alone or together with MR-proADM results could ameliorate the prediction of in-hospital mortality of COVID-19 patients at the triage. Moreover, the hypothesis that CT score and MR-proADM levels together could play a key role in predicting the correct clinical setting for these patients was also evaluated. METHODS: Epidemiological, demographic, clinical, laboratory, and outcome data were assessed and analyzed from 265 consecutive patients admitted to the triage of the ED with a SARS-CoV-2 infection. RESULTS AND CONCLUSIONS: The accuracy results by AUROC analysis and statistical analysis demonstrated that CT score is particularly effective, when utilized together with the MR-proADM level, in the risk stratification of COVID-19 patients admitted to the ED, thus helping the decision-making process of emergency physicians and optimizing the hospital resources.
RESUMEN
Ichthyoses are genetically determined cornification disorders of the epidermis characterized by the presence of different degrees of scaling, hyperkeratosis, and erythroderma often associated with palmoplantar keratoderma. Different classifications of these diseases have been proposed, often based upon the involved genes and/or the clinical presentation. The clinical features of these diseases present some overlap of phenotypes among distinct genetic entities, depending mainly on the penetrance of mutations. In this study, using a clinical, genetic, and molecular approach, we analyzed a family with two affected members who had clinical and histological features resembling erythrokeratodermia variabilis (EKV) or a type of erythrodermic hyperkeratosis with palmoplantar keratoderma. Despite of the clinical presentation, we demonstrated that the affected patients were genetically double heterozygous for two different mutations in the ABCA12 gene, known to be responsible for harlequin ichthyosis. To explain the mild phenotype of our patients, we performed a molecular characterization of the skin. In the upper layers of the epidermis, the results showed a patchy presence of the glucosyl-ceramides (GlcCer), which is the lipid transported by ABCA12, fundamental in contributing to skin impermeability. Indeed, the two mutations detected do not completely abolish ABCA12 activity, indicating that the mild phenotype is due to a partial loss of function of the enzyme, thus giving rise to an intermediate phenotype resembling EKVP, due to a partial depletion of GlcCer deposition.
Asunto(s)
Eritroqueratodermia Variable , Ictiosis Lamelar , Ictiosis , Queratodermia Palmoplantar , Humanos , Eritroqueratodermia Variable/genética , Ictiosis Lamelar/genética , Ictiosis/genética , Mutación , Glucosilceramidas , Transportadoras de Casetes de Unión a ATP/genéticaRESUMEN
BACKGROUND: Laboratory Automation (LA) is an innovative technology that is currently available for microbiology laboratories. LA can be a game changer by revolutionizing laboratory workflows through efficiency improvement and is also effective in the organization and standardization of procedures, enabling staff requalification. It can provide an important return on investment (time spent redefining the workflow as well as direct costs of instrumentation) in the medium to long term. METHODS: Here, we present our experience with the WASPLab® system introduced in our lab during the COVID-19 pandemic. We evaluated the impact due to the system by comparing the TAT recorded on our samples before, during, and after LA introduction (from 2019 to 2021). We focused our attention on blood cultures (BCs) and biological fluid samples (BLs). RESULTS: TAT recorded over time showed a significant decrease: from 97 h to 53.5 h (Δ43.5 h) for BCs and from 73 h to 58 h (Δ20 h) for BLs. Despite the introduction of the WASPLab® system, we have not been able to reduce the number of technical personnel units dedicated to the microbiology lab, but WASPLab® has allowed us to direct some of the staff resources toward other laboratory activities, including those required by the pandemic. CONCLUSIONS: LA can significantly enhance laboratory performance and, due to the significant reduction in reporting time, can have an effective impact on clinical choices and therefore on patient outcomes. Therefore, the initial costs of LA adoption must be considered worthwhile.
RESUMEN
Infectious diseases such as HIV and HBV are a global concern for their impact in terms of public health and costs for national health services. A central role in contrasting the spread of the infections is represented by timely diagnosis. The speed of detection depends on several factors including the type of test used. Antibody response to hepatitis B surface antigens (anti-HBs) is an important serological marker used for HBV-infection detection. The aim of this study was to compare the performance of the Abbott system and of the new analyser Mindray 1200i in the detection of HBV- and HIV-infections. Clinical serum samples were collected from patients randomly selected from PTV University Hospital of University of Rome "Tor Vergata" and tested for HBV and HIV antibodies. Samples were evaluated by Mindray Cl 1200i CLIA screening tests for HBV and HIV and the results were compared with the Abbott Architect analytical system, the routine instrument of the hospital clinical biochemistry laboratory. Precision study, linearity, and carryover were performed on the results obtained. The agreement between the results of the Abbott and Mindray CLIA ranged from 99% to 100% and the discrepancy rate from 0% to 1%. The measurements demonstrated that the Mindray CL-1200i platform offers high-level performance with accurate and consistent test results and could represent a valuable tool if implemented in routine analysis.
RESUMEN
Midregional proadrenomedullin (MR-proADM) has been shown to play a key role in endothelial dysfunction, with increased levels helping to prevent early stages of organ dysfunction. Recent clinical evidence has demonstrated MR-proADM to be a helpful biomarker to identify disease severity in patients with sepsis as well as pneumonia. This biomarker is helpful at triage in emergency departments to assess risk level of patients. The aim of this study is to evaluate the stability of MR-proADM in different biological matrices. The results, obtained by Bland-Altman and scatter plot analyses, demonstrate that deviation of MR-proADM concentration in serum compared to EDTA plasma unequivocally shows that serum should not be used as a sample matrix. Instead, the excellent correlation of heparin plasma vs EDTA plasma samples shows that heparin plasma can be used without reservation in clinical routine and emergency samples.
Asunto(s)
Adrenomedulina , Heparina , Humanos , Pronóstico , Ácido Edético , BiomarcadoresRESUMEN
Coronavirus disease 2019 (COVID-19) presents a clinical spectrum that ranges from a mild condition to critical illness. Patients with critical illness present respiratory failure, septic shock and/or multi-organ failure induced by the so called "cytokine storm". Inflammatory cytokines affect iron metabolism, mainly inducing the synthesis of hepcidin, a hormone peptide not routinely measured. High levels of hepcidin have been associated with the severity of COVID-19. The aim of this study was to analyze, retrospectively, the levels of hepcidin in a group of COVID-19 patients admitted to the intensive care unit (ICU) of the Policlinico Tor Vergata of Rome, Italy. Thirty-eight patients from November 2020 to May 2021 were enrolled in the study. Based on the clinical outcome, the patients were assigned to two groups: survivors and non-survivors. Moreover, a series of routine laboratory parameters were monitored during the stay of the patients in the ICU and their levels correlated to the outcome. Statistical differences in the level of hepcidin, D-dimer, IL-6, LDH, NLR, neutrophils level, CRP, TNF-α and transferrin were observed between the groups. In particular, hepcidin values showed significantly different median concentrations (88 ng/mL vs. 146 ng/mL) between survivors and non-survivors. In addition, ROC curves analysis revealed sensitivity and specificity values of 74% and 76%, respectively, at a cut-off of 127 (ng/mL), indicating hepcidin as a good biomarker in predicting the severity and mortality of COVID-19 in ICU patients.
RESUMEN
In the past two pandemic years, Emergency Departments (ED) have been overrun with COVID-19-suspicious patients. Some data on the role played by laboratory biomarkers in the early risk stratification of COVID-19 patients have been recently published. The aim of this study is to assess the potential role of the new biomarker mid-regional proadrenomedullin (MR-proADM) in stratifying the in-hospital mortality risk of COVID-19 patients at the triage. A further goal of the present study is to evaluate whether MR-proADM together with other biochemical markers could play a key role in assessing the correct care level of these patients. Data from 321 consecutive patients admitted to the triage of the ED with a COVID-19 infection were analyzed. Epidemiological; demographic; clinical; laboratory; and outcome data were assessed. All the biomarkers analyzed showed an important role in predicting mortality. In particular, an increase of MR-proADM level at ED admission was independently associated with a threefold higher risk of IMV. MR-proADM showed greater ROC curves and AUC when compared to other laboratory biomarkers for the primary endpoint such as in-hospital mortality, except for CRP. This study shows that MR-proADM seems to be particularly effective for early predicting mortality and the need of ventilation in COVID-19 patients admitted to the ED.
RESUMEN
BACKGROUND: Mid-Regional pro-Adrenomedullin (MR-proADM) is an inflammatory biomarker that improves the prognostic assessment of patients with sepsis, septic shock and organ failure. Previous studies of MR-proADM have primarily focussed on bacterial infections. A limited number of small and monocentric studies have examined MR-proADM as a prognostic factor in patients infected with SARS-CoV-2, however there is need for multicenter validation. An evaluation of its utility in predicting need for hospitalisation in viral infections was also performed. METHODS: An observational retrospective analysis of 1861 patients, with SARS-CoV-2 confirmed by RT-qPCR, from 10 hospitals across Europe was performed. Biomarkers, taken upon presentation to Emergency Departments (ED), clinical scores, patient demographics and outcomes were collected. Multiclass random forest classifier models were generated as well as calculation of area under the curve analysis. The primary endpoint was hospital admission with and without death. RESULTS: Patients suitable for safe discharge from Emergency Departments could be identified through an MR-proADM value of ≤ 1.02 nmol/L in combination with a CRP (C-Reactive Protein) of ≤ 20.2 mg/L and age ≤ 64, or in combination with a SOFA (Sequential Organ Failure Assessment) score < 2 if MR-proADM was ≤ 0.83 nmol/L regardless of age. Those at an increased risk of mortality could be identified upon presentation to secondary care with an MR-proADM value of > 0.85 nmol/L, in combination with a SOFA score ≥ 2 and LDH > 720 U/L, or in combination with a CRP > 29.26 mg/L and age ≤ 64, when MR-proADM was > 1.02 nmol/L. CONCLUSIONS: This international study suggests that for patients presenting to the ED with confirmed SARS-CoV-2 infection, MR-proADM in combination with age and CRP or with the patient's SOFA score could identify patients at low risk where outpatient treatment may be safe.
Asunto(s)
Adrenomedulina , COVID-19 , Hospitalización , Adrenomedulina/análisis , Biomarcadores , Proteína C-Reactiva , COVID-19/mortalidad , Mortalidad Hospitalaria , Humanos , Pronóstico , Precursores de Proteínas , Estudios Retrospectivos , SARS-CoV-2RESUMEN
With the widespread use of coronavirus disease 2019 (COVID-19) vaccines, a rapid and reliable method to detect SARS-CoV-2 neutralizing antibodies (NAbs) is extremely important for monitoring vaccine effectiveness and immunity in the population. The purpose of this study was to evaluate the performance of the RapiRead™ reader and the TestNOW™ COVID-19 NAb rapid point-of-care (POC) test for quantitative measurement of antibodies against the spike protein receptor-binding domain of severe respiratory syndrome coronavirus 2 (SARS-CoV-2) in different biological matrices compared to chemiluminescence immunoassay (CLIA) methods. Ninety-four samples were collected and analyzed using a RapiRead™ reader and TestNOW™ COVID-19 NAb kits for detecting neutralizing antibodies, and then using two CLIAs. The data were compared statistically using the Kruskal-Wallis test for more than two groups or the Mann-Whitney test for two groups. Specificity and sensitivity were evaluated using a receiver operating characteristic (ROC) curve. Good correlation was observed between the rapid lateral flow immunoassay (LFIA) test system and both CLIA methods. RapiRead™ reader/TestNOW™ COVID-19 NAb vs. Maglumi: correlation coefficient (r) = 0.728 for all patients; r = 0.841 for vaccinated patients. RapiRead™ reader/TestNOW™ COVID-19 NAb vs. Mindray: r = 0.6394 in all patients; r = 0.8724 in vaccinated patients. The time stability of the POC serological test was also assessed considering two times of reading, 12 and 14 minutes. The data revealed no significant differences. The use of a RapiRead™ reader and TestNOW™ COVID-19 NAb assay is a quantitative, rapid, and valid method for detecting SARS-CoV-2 neutralizing antibodies and could be a useful tool for screening studies of SARS-CoV-2 infection and assessing the efficacy of vaccines in a non-laboratory context.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Vacunas contra la COVID-19 , Humanos , Inmunoensayo/métodos , Sistemas de Atención de Punto , Sensibilidad y EspecificidadRESUMEN
Flavonoids are interesting molecules synthetized by plants. They can be found abundantly in seeds and fruits, determining the color, flavor, and other organoleptic characteristics, as well as contributing to important nutritional aspects. Beyond these characteristics, due to their biochemical properties and characteristics, they can be considered bioactive compounds. Several interesting studies have demonstrated their biological activity in different cellular and physiological processes in high-order organisms including humans. The flavonoid molecular structure confers the capability of reacting with and neutralizing reactive oxygen species (ROS), behaving as scavengers in all processes generating this class of molecules, such as UV irradiation, a process widely present in plant physiology. Importantly, the recent scientific literature has demonstrated that flavonoids, in human physiology, are active compounds acting not only as scavengers but also with the important role of counteracting the inflammation process. Among the wide variety of flavonoid molecules, significant results have been shown by investigating the role of the flavones luteolin and luteolin-7-O-glucoside (LUT-7G). For these compounds, experimental results demonstrated an interesting anti-inflammatory action, both in vitro and in vivo, in the interaction with JAK/STAT3, NF-κB, and other pathways described in this review. We also describe the effects in metabolic pathways connected with inflammation, such as cellular glycolysis, diabetes, lipid peroxidation, and effects in cancer cells. Moreover, the inhibition of inflammatory pathway in endothelial tissue, as well as the NLRP3 inflammasome assembly, demonstrates a key role in the progression of such phenomena. Since these micronutrient molecules can be obtained from food, their biochemical properties open new perspectives with respect to the long-term health status of healthy individuals, as well as their use as a coadjutant treatment in specific diseases.
Asunto(s)
Antiinflamatorios , Luteolina , Antiinflamatorios/farmacología , Flavonoides/farmacología , Glucósidos/química , Glucósidos/farmacología , Humanos , Inflamación/tratamiento farmacológico , Luteolina/química , Luteolina/farmacologíaRESUMEN
Aim of this work was to verify the analytical performance of thyroid panel tests measured by chemiluminescence immunoassay (CLIA) CL-1200i and to validate its efficacy as laboratory test for thyroid disorder.Serum samples were obtained by standard centrifugation, thawed and assayed in a blinded fashion, and in a single batch. This study compares the values of thyroid panel tests measured by Mindray CL-1200i chemiluminescent system to the Abbott platforms for TSH, FT3, FT4, and Beckman Coulter for Tg, TgAb, and TPOAb on patient serum samples. A total of 180 randomly selected patients including both hospitalized and ambulatory patients from the Policlinico Tor Vergata (PTV) of the University of Rome Tor Vergata were used. In all analyses performed, the thyroid panel tests of the Mindray platform showed discriminative ability to quantitatively assess the analyte involved in thyroid disease and disorder. This study verified that Mindray CL-1200i chemiluminescent system thyroid panel tests is a valid method for obtaining a quantitative analysis of thyroid disorders. It showed high diagnostic efficiency and could represent a valid tool with a potential reduction in time and workload for the diagnosis.
Asunto(s)
Tiroxina , Triyodotironina , Humanos , Inmunoensayo/métodos , Luminiscencia , Glándula Tiroides , TirotropinaAsunto(s)
Adrenomedulina/sangre , COVID-19/terapia , Servicio de Urgencia en Hospital , Medición de Riesgo/métodos , Triaje , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19/sangre , COVID-19/mortalidad , Femenino , Mortalidad Hospitalaria , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic and mild-to-moderate COVID-19 patients. From April 2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 patients were recruited and divided into three groups. Thirty-two patients (14 hospitalized and 18 in home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any medication. Furthermore, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary analysis. Liposomal bLf-treated COVID-19 patients obtained an earlier and significant (p < 0.0001) SARS-CoV-2 RNA negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 vs. 32.61 days, respectively). Liposomal bLf-treated COVID-19 patients showed fast clinical symptoms recovery compared to the SOC-treated COVID-19 patients. In bLf-treated patients, a significant decrease in serum ferritin, IL-6, and D-dimers levels was observed. No adverse events were reported. These observations led us to speculate a potential role of bLf in the management of mild-to-moderate and asymptomatic COVID-19 patients.
Asunto(s)
COVID-19 , Lactoferrina , Animales , Antivirales/uso terapéutico , Bovinos , Humanos , ARN Viral , SARS-CoV-2RESUMEN
MicroRNAs (miRNAs) play an essential role in the regulation of a number of physiological functions. miR-133a and other muscular miRs (myomiRs) play a key role in muscle cell growth and in some type of cancers. Here, we show that miR133a is upregulated in individuals that undertake physical exercise. We used a skeletal muscle differentiation model to dissect miR-133a's role and to identify new targets, identifying Tropomyosin-4 (TPM4). This protein is expressed during muscle differentiation, but importantly it is an essential component of microfilament cytoskeleton and stress fibres formation. The microfilament scaffold remodelling is an essential step in cell transformation and tumour progression. Using the muscle system, we obtained valuable information about the microfilament proteins, and the knowledge on these molecular players can be transferred to the cytoskeleton rearrangement observed in cancer cells. Further investigations showed a role of TPM4 in cancer physiology, specifically, we found that miR-133a downregulation leads to TPM4 upregulation in colon carcinoma (CRC), and this correlates with a lower patient survival. At molecular level, we demonstrated in myocyte differentiation that TPM4 is positively regulated by the TA isoform of the p63 transcription factor. In muscles, miR-133a generates a myogenic stimulus, reducing the differentiation by downregulating TPM4. In this system, miR-133a counteracts the differentiative TAp63 activity. Interestingly, in CRC cell lines and in patient biopsies, miR-133a is able to regulate TPM4 activity, while TAp63 is not active. The downregulation of the miR leads to TPM4 overexpression, this modifies the architecture of the cell cytoskeleton contributing to increase the invasiveness of the tumour and associating with a poor prognosis. These results add data to the interesting question about the link between physical activity, muscle physiology and protection against colorectal cancer. The two phenomena have in common the cytoskeleton remodelling, due to the TPM4 activity, that is involved in stress fibres formation.
Asunto(s)
Diferenciación Celular/genética , Neoplasias del Colon/genética , MicroARNs/genética , Factores de Transcripción/genética , Tropomiosina/genética , Proteínas Supresoras de Tumor/genética , Citoesqueleto de Actina/genética , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias del Colon/patología , Citoesqueleto/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células Musculares/citología , Desarrollo de Músculos/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Fibras de Estrés/genéticaRESUMEN
Palmoplantar keratodermas (PPKs) are characterized by thickness of stratum corneum and epidermal hyperkeratosis localized in palms and soles. PPKs can be epidermolytic (EPPK) or non epidermolytic (NEPPK). Specific mutations of keratin 16 (K16) and keratin 1 (K1) have been associated to EPPK, and NEPPK. Cases of mosaicism in PPKs due to somatic keratin mutations have also been described in scientific literature. We evaluated a patient presenting hyperkeratosis localized monolaterally in the right palmar area, characterized by linear yellowish hyperkeratotic lesions following the Blaschko lines. No other relatives of the patient showed any dermatological disease. Light and confocal histological analysis confirmed the presence of epidermolityic hyperkeratosis. Genetic analysis performed demonstrates the heterozygous deletion NM_006121.4:r.274_472del for a total of 198 nucleotides, in KRT1 cDNA obtained by a palmar lesional skin biopsy, corresponding to the protein mutation NP_006112.3:p.Gly71_Gly137del. DNA extracted from peripheral blood lymphocytes did not display the presence of the mutation. These results suggest a somatic mutation causing an alteration in K1 N-terminal variable domain (V1). The deleted sequence involves the ISIS subdomain, containing a lysine residue already described as fundamental for epidermal transglutaminases in the crosslinking of IF cytoskeleton. Moreover, a computational analysis of the wild-type and V1-mutated K1/K10 keratin dimers, suggests an unusual interaction between these keratin filaments. The mutation taster in silico analysis also returned a high probability for a deleterious mutation. These data demonstrate once again the importance of the head domain (V1) of K1 in the formation of a functional keratinocyte cytoskeleton. Moreover, this is a further demonstration of the presence of somatic mutations arising in later stages of the embryogenesis, generating a mosaic phenotype.