Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
1.
Clin Lung Cancer ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39122606

RESUMEN

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be spread by individuals unaware they are infected. Such dissemination has heightened ramifications in cancer patients, who may need to visit healthcare facilities frequently, be exposed to immune-compromising therapies, and face greater morbidity from coronavirus disease 2019 (COVID-19). We determined characteristics of (1) asymptomatic, clinically diagnosed, and (2) serologically documented but clinically undiagnosed SARS-CoV-2 infection among individuals with lung cancer. PATIENTS AND METHODS: In a multicenter registry, individuals with lung cancer (regardless of prior SARS-CoV-2 vaccination or documented infection) underwent collection of clinical data and serial blood samples, which were tested for antinucleocapsid protein antibody (anti-N Ab) or IgG (N) levels. We used multivariable logistic regression models to investigate clinical characteristics associated with the presence or absence of symptoms and the presence or absence of a clinical diagnosis among patients with their first SARS-CoV-2 infection. RESULTS: Among patients with serologic evidence or clinically documented SARS-CoV-2 infection, 80/142 (56%) had no reported symptoms at their first infection, and 61/149 (40%) were never diagnosed. Asymptomatic infection was more common among older individuals and earlier-stage lung cancer. In multivariable analysis, non-white individuals with SARS-CoV-2 serologic positivity were 70% less likely ever to be clinically diagnosed (P = .002). CONCLUSIONS: In a multicenter lung cancer population, a substantial proportion of SARS-CoV-2 infections had no associated symptoms or were never clinically diagnosed. Because such cases appear to occur more frequently in populations that may face greater COVID-19-associated morbidity, measures to limit disease spread and severity remain critical.

2.
Vaccines (Basel) ; 12(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39066351

RESUMEN

In patients with lung cancer (LC), understanding factors that impact the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) anti-spike antibody (SAb) titers over time is critical, but challenging, due to evolving treatments, infections, vaccinations, and health status. The objective was to develop a time-dependent regression model elucidating individual contributions of factors influencing SAb levels in LC patients using a prospective, longitudinal, multi-institutional cohort study initiated in January 2021. The study evaluated 296 LC patients-median age 69; 55% female; 50% stage IV. Blood samples were collected every three months to measure SAb levels using FDA-approved ELISA. Asymptomatic and unreported infections were documented through measurement of anti-nucleocapsid Ab levels (Meso Scale Discovery). Associations between clinical characteristics and titers were evaluated using a time-dependent linear regression model with a generalized estimating equation (GEE), considering time-independent variables (age, sex, ethnicity, smoking history, histology, and stage) and time-dependent variables (booster vaccinations, SARS-CoV-2 infections, cancer treatment, steroid use, and influenza vaccination). Significant time-dependent effects increasing titer levels were observed for prior SARS-CoV-2 infection (p < 0.001) and vaccination/boosters (p < 0.001). Steroid use (p = 0.043) and chemotherapy (p = 0.033) reduced titer levels. Influenza vaccination was associated with increased SAb levels (p < 0.001), independent of SARS-CoV-2 vaccine boosters. Prior smoking significantly decreased titers in females (p = 0.001). Age showed no association with titers. This GEE-based linear regression model unveiled the nuanced impact of multiple variables on patient anti-spike Ab levels over time. After controlling for the major influences of vaccine and SARS-CoV-2 infections, chemotherapy and steroid use were found to have negatively affected titers. Smoking in females significantly decreased titers. Surprisingly, influenza vaccinations were also significantly associated, likely indirectly, with improved SARS-CoV-2 titers.

3.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948776

RESUMEN

Cachexia is a wasting syndrome comprised of adipose, muscle, and weight loss observed in cancer patients. Tumor loss-of-function mutations in STK11/LKB1 , a regulator of the energy sensor AMP-activated protein kinase, induce cancer cachexia (CC) in preclinical models and are associated with cancer-related weight loss in NSCLC patients. Here we characterized the relevance of the NSCLC-associated cachexia factor growth differentiation factor 15 (GDF15) in several patient-derived and genetically engineered STK11/LKB1 -mutant NSCLC cachexia lines. Both tumor mRNA expression and serum concentrations of tumor-derived GDF15 were significantly elevated in multiple mice transplanted with patient-derived STK11/LKB1 -mutated NSCLC lines. GDF15 neutralizing antibody administered to mice transplanted with patient- or mouse-derived STK11/LKB1 -mutated NSCLC lines suppressed cachexia-associated adipose loss, muscle atrophy, and changes in body weight. The silencing of GDF15 in multiple human NSCLC lines was also sufficient to eliminate in vivo circulating GDF15 levels and abrogate cachexia induction, suggesting that tumor and not host tissues represent a key source of GDF15 production in these cancer models. Finally, reconstitution of wild-type STK11/LKB1 in a human STK11/LKB1 loss-of-function NSCLC line that normally induces cachexia in vivo correlated with the absence of tumor-secreted GDF15 and rescue from the cachexia phenotype. The current data provide evidence for tumor-secreted GDF15 as a conduit and a therapeutic target through which NSCLCs with STK11/LKB1 loss-of-function mutations promote cachexia-associated wasting.

4.
Exp Cell Res ; 439(1): 114057, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679315

RESUMEN

Certain oncogenes, including mutant RAS and BRAF, induce a type of senescence known as oncogene-induced senescence (OIS) in normal cells in a cell-type-specific manner. OIS serves as a barrier to transformation by activated oncogenes. Our previous studies showed that mutant KRASV12 did not efficiently induce OIS in an hTERT/Cdk4-immortalized normal human bronchial epithelial cell line (HBEC3), but it did enhance both anchorage-dependent and anchorage-independent growth. In this study, we investigated whether mutant BRAF, a well-known inducer of OIS, could trigger OIS in HBEC3 cells. We also assessed the impact of mutant BRAF on the growth of HBEC3 cells, as no previous studies have examined this using a normal bronchial epithelial cell line model. We established an HBEC3 cell line, designated as HBEC3-BIN, that expresses mutant BRAFV600E in a doxycycline-regulated manner. Unlike our previous finding that KRASV12 upregulated both pERK and pAKT, mutant BRAFV600E upregulated pERK but not pAKT in HBEC3-BIN cells. Similar to KRASV12, BRAFV600E did not efficiently induce OIS. Interestingly, while BRAFV600E inhibited colony formation in anchorage-dependent conditions, it dramatically enhanced colony formation in anchorage-independent conditions in HBEC3-BIN. In HBEC3 cells without BRAFV600E or KRASV12 expression, p21 was only detected in the cytoplasm, and its localization was not altered by the expression of BRAFV600E or KRASV12. Next-generation sequencing analysis revealed an enrichment of gene sets known to be involved in carcinogenesis, including IL3/JAK/STAT3, IL2, STAT5, and the EMT pathway. Our results indicate that, unlike KRASV12, which promoted both, BRAFV600E enhances anchorage-independent growth but inhibits anchorage-dependent growth of HBEC3. This contrast may result from differences in activation signaling in the downstream pathways. Furthermore, HBEC3 cells appear to be inherently resistant to OIS, which may be partly due to the fact that p21 remains localized in the cytoplasm upon expression of BRAFV600E or KRASV12.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Senescencia Celular/genética , Mutación , Proliferación Celular/genética , Línea Celular , Células Epiteliales/metabolismo , Bronquios/metabolismo , Bronquios/citología , Oncogenes/genética , Transducción de Señal
5.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38464291

RESUMEN

Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.

6.
Cancer Cell ; 42(3): 429-443.e4, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38366589

RESUMEN

Atezolizumab (anti-PD-L1), combined with carboplatin and etoposide (CE), is now a standard of care for extensive-stage small-cell lung cancer (ES-SCLC). A clearer understanding of therapeutically relevant SCLC subsets could identify rational combination strategies and improve outcomes. We conduct transcriptomic analyses and non-negative matrix factorization on 271 pre-treatment patient tumor samples from IMpower133 and identify four subsets with general concordance to previously reported SCLC subtypes (SCLC-A, -N, -P, and -I). Deeper investigation into the immune heterogeneity uncovers two subsets with differing neuroendocrine (NE) versus non-neuroendocrine (non-NE) phenotypes, demonstrating immune cell infiltration hallmarks. The NE tumors with low tumor-associated macrophage (TAM) but high T-effector signals demonstrate longer overall survival with PD-L1 blockade and CE versus CE alone than non-NE tumors with high TAM and high T-effector signal. Our study offers a clinically relevant approach to discriminate SCLC patients likely benefitting most from immunotherapies and highlights the complex mechanisms underlying immunotherapy responses.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Pulmonares/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/genética , Carboplatino/uso terapéutico , Etopósido/uso terapéutico , Inmunoterapia
7.
Clin Cancer Res ; 30(9): 1846-1858, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180245

RESUMEN

PURPOSE: The classification of small cell lung cancer (SCLC) into distinct molecular subtypes defined by ASCL1, NEUROD1, POU2F3, or YAP1 (SCLC-A, -N, -P, or -Y) expression, paves the way for a personalized treatment approach. However, the existence of a distinct YAP1-expressing SCLC subtype remains controversial. EXPERIMENTAL DESIGN: To better understand YAP1-expressing SCLC, the mutational landscape of human SCLC cell lines was interrogated to identify pathogenic alterations unique to SCLC-Y. Xenograft tumors, generated from cell lines representing the four SCLC molecular subtypes, were evaluated by a panel of pathologists who routinely diagnose thoracic malignancies. Diagnoses were complemented by transcriptomic analysis of primary tumors and human cell line datasets. Protein expression profiles were validated in patient tumor tissue. RESULTS: Unexpectedly, pathogenic mutations in SMARCA4 were identified in six of eight SCLC-Y cell lines and correlated with reduced SMARCA4 mRNA and protein expression. Pathologist evaluations revealed that SMARCA4-deficient SCLC-Y tumors exhibited features consistent with thoracic SMARCA4-deficient undifferentiated tumors (SMARCA4-UT). Similarly, the transcriptional profile SMARCA4-mutant SCLC-Y lines more closely resembled primary SMARCA4-UT, or SMARCA4-deficient non-small cell carcinoma, than SCLC. Furthermore, SMARCA4-UT patient samples were associated with a YAP1 transcriptional signature and exhibited strong YAP1 protein expression. Together, we found little evidence to support a diagnosis of SCLC for any of the YAP1-expressing cell lines originally used to define the SCLC-Y subtype. CONCLUSIONS: SMARCA4-mutant SCLC-Y cell lines exhibit characteristics consistent with SMARCA4-deficient malignancies rather than SCLC. Our findings suggest that, unlike ASCL1, NEUROD1, and POU2F3, YAP1 is not a subtype defining transcription factor in SCLC. See related commentary by Rekhtman, p. 1708.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , ADN Helicasas , Neoplasias Pulmonares , Mutación , Proteínas Nucleares , Carcinoma Pulmonar de Células Pequeñas , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Factores de Transcripción/genética , ADN Helicasas/genética , Proteínas Nucleares/genética , Línea Celular Tumoral , Animales , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Señalizadoras YAP/genética , Ratones , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Regulación Neoplásica de la Expresión Génica , Fosfoproteínas/genética , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica
8.
Sci Adv ; 10(3): eadh2579, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241363

RESUMEN

Although BRCA1/2 mutations are not commonly found in small cell lung cancer (SCLC), a substantial fraction of SCLC shows clinically relevant response to PARP inhibitors (PARPis). However, the underlying mechanism(s) of PARPi sensitivity in SCLC is poorly understood. We performed quantitative proteomic analyses and identified proteomic changes that signify PARPi responses in SCLC cells. We found that the vulnerability of SCLC to PARPi could be explained by the degradation of lineage-specific oncoproteins (e.g., ASCL1). PARPi-induced activation of the E3 ligase HUWE1 mediated the ubiquitin-proteasome system (UPS)-dependent ASCL1 degradation. Although PARPi induced a general DNA damage response in SCLC cells, this signal generated a cell-specific response in ASCL1 degradation, leading to the identification of HUWE1 expression as a predictive biomarker for PARPi. Combining PARPi with agents targeting these pathways markedly improved therapeutic response in SCLC. The degradation of lineage-specific oncoproteins therefore represents a previously unidentified mechanism for PARPi efficacy in SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína BRCA1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteómica , Proteína BRCA2/genética , Proteínas Oncogénicas , Línea Celular Tumoral , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas/genética
9.
Nat Commun ; 15(1): 672, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253555

RESUMEN

There are few effective treatments for small cell lung cancer (SCLC) underscoring the need for innovative therapeutic approaches. This study focuses on exploiting telomerase, a critical SCLC dependency as a therapeutic target. A prominent characteristic of SCLC is their reliance on telomerase activity, a key enzyme essential for their continuous proliferation. Here we utilize a nucleoside analog, 6-Thio-2'-deoxyguanosine (6TdG) currently in phase II clinical trials, that is preferentially incorporated by telomerase into telomeres leading to telomere dysfunction. Using preclinical mouse and human derived models we find low intermittent doses of 6TdG inhibit tumor growth and reduce metastatic burden. Anti-tumor efficacy correlates with a reduction in a subpopulation of cancer initiating like cells (CICs) identified by their expression of L1CAM/CD133 and highest telomerase activity. 6TdG treatment also leads to activation of innate and adaptive anti-tumor responses. Mechanistically, 6TdG depletes CICs and induces type-I interferon signaling leading to tumor immune visibility by activating tumor cell STING signaling. We also observe increased sensitivity to irradiation after 6TdG treatment in both syngeneic and humanized SCLC xenograft models both of which are dependent on the presence of host immune cells. This study underscores the immune-enhancing and metastasis-reducing effects of 6TdG, employing a range of complementary in vitro and in vivo SCLC preclinical models providing a potential therapeutic approach to SCLC.


Asunto(s)
Desoxiguanosina/análogos & derivados , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Telomerasa , Tionucleósidos , Humanos , Animales , Ratones , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Telómero
10.
Cell ; 187(1): 14-16, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181738

RESUMEN

Small cell lung cancer (SCLC) is a recalcitrant malignancy. Conquering it will require deep insight into its biology. In this issue of Cell, Liu and colleagues describe proteomic and phosphoproteomic landscapes of resected SCLC tumors and illustrate the potential of this knowledge to identify new SCLC vulnerabilities.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Proteómica , Conocimiento
11.
Thorac Cancer ; 15(2): 131-141, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38014454

RESUMEN

BACKGROUND: Molecular abnormalities in the Wnt/ß-catenin pathway confer malignant phenotypes in lung cancer. Previously, we identified the association of leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6) with oncogenic Wnt signaling, and its downregulation upon ß-catenin knockdown in non-small cell lung cancer (NSCLC) cells carrying CTNNB1 mutations. The aim of this study was to explore the mechanisms underlying this association and the accompanying phenotypes. METHODS: LGR6 expression in lung cancer cell lines and surgical specimens was analyzed using quantitative RT-PCR and immunohistochemistry. Cell growth was assessed using colony formation assay. Additionally, mRNA sequencing was performed to compare the expression profiles of cells subjected to different treatments. RESULTS: LGR6 was overexpressed in small cell lung cancer (SCLC) and NSCLC cell lines, including the CTNNB1-mutated NSCLC cell lines HCC15 and A427. In both cell lines, LGR6 knockdown inhibited cell growth. LGR6 expression was upregulated in spheroids compared to adherent cultures of A427 cells, suggesting that LGR6 participates in the acquisition of cancer stem cell properties. Immunohistochemical analysis of lung cancer specimens revealed that the LGR6 protein was predominantly overexpressed in SCLCs, large cell neuroendocrine carcinomas, and lung adenocarcinomas, wherein LGR6 overexpression was associated with vascular invasion, the wild-type EGFR genotype, and an unfavorable prognosis. Integrated mRNA sequencing analysis of HCC15 and A427 cells with or without LGR6 knockdown revealed LGR6-related pathways and genes associated with cancer development and stemness properties. CONCLUSIONS: Our findings highlight the oncogenic roles of LGR6 overexpression induced by aberrant Wnt/ß-catenin signaling in lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Vía de Señalización Wnt/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , beta Catenina/genética , beta Catenina/metabolismo , ARN Mensajero , Línea Celular Tumoral , Proliferación Celular , Receptores Acoplados a Proteínas G/genética
12.
Cell Commun Signal ; 21(1): 331, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985999

RESUMEN

INTRODUCTION: Inflammation plays a significant role in various cancers, including lung cancer, where the inflammatory cytokine IL-1ß is often elevated in the tumor microenvironment. Patients with lung adenocarcinoma show higher levels of serum IL-1ß compared to healthy individual. Moreover, IL-1ß blockade reduces the incidence and mortality of lung cancer. Our prior studies revealed that alveolar type-II cells, the precursors for lung adenocarcinoma, display an induction in the expression of the enzyme tryptophan 2,3-dioxygenase (TDO2) during normal lung development. This induction of TDO2 coincides with an increase in IL-1ß levels and is likely caused by IL-1ß. Given that cancer cells can co-opt developmentally regulated pathways, we hypothesized that IL-1ß may exert its pro-tumoral function by stimulating TDO2 and indoleamine 2, 3-dioxygenase-1 (IDO1), parallel enzymes involved in the conversion of tryptophan (Trp) into the immune-suppressive oncometabolite kynurenine (Kyn). Our goal was to determine whether IL-1ß is a common upstream regulator of immune checkpoint regulators. METHODS: To determine whether IL-1ß regulates IDO1, TDO2, PD-L1, and PD-L2, we measured mRNA and protein levels in lung adenocarcinoma cells lines (A549, H1792, H1838, H2347, H2228, HCC364 and HCC827) grown in 2D or 3D and in immortalized normal lung epithelial cells (HBEC3-KT and HSAEC1-KT). To determine the importance of the NFκB pathway in mediating IL-1ß -regulated cellular effects, we used siRNA to knockdown RelA/p65 in IL-1ß treated cells. The levels of Trp and Kyn in the IL-1ß-treated cells and media were measured by mass spectrometry. RESULTS: Upon IL-1ß stimulation, lung adenocarcinoma cells exhibited significant increases in IDO1 mRNA and protein levels, a response that depended on the NFκB pathway. Interestingly, this induction was more pronounced in 3D spheroid cultures compared to monolayer cultures and was not observed in normal immortalized lung epithelial cells. Furthermore, the conversion of Trp to Kyn increased in cells exposed to IL-1ß, aligning with the heightened IDO1 expression. Remarkably, IL-1ß also upregulated the expression of programmed death ligand-1 (PD-L1) and PD-L2 in multiple cell lines, indicating that IL-1ß triggers parallel immune-suppressive mechanisms in lung adenocarcinoma cells. CONCLUSIONS: Our studies demonstrate that lung adenocarcinoma cells, but not normal immortalized lung epithelial cells, respond to IL-1ß signaling by inducing the expression of parallel immune checkpoint proteins that have the potential to promote immune evasion. Video Abstract.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/metabolismo , Antígeno B7-H1/metabolismo , Quinurenina/metabolismo , Neoplasias Pulmonares/patología , ARN Mensajero , Triptófano , Microambiente Tumoral
13.
Cancer Cell ; 41(11): 1838-1840, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37863065

RESUMEN

Patients diagnosed with lung cancer (LC) exhibit increased susceptibility to SARS-CoV-2 infection. Rodilla et al. monitor the levels of plasma anti-nucleocapsid antibodies within a cohort of fully vaccinated LC patients and reveal that the actual infection rate is nearly twice the documented rate, indicating a significant prevalence of unreported cases.


Asunto(s)
COVID-19 , Neoplasias Pulmonares , Humanos , SARS-CoV-2 , Nucleocápside , Pruebas Inmunológicas , Prueba de COVID-19
14.
Cancer Cell ; 41(10): 1731-1748.e8, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37774698

RESUMEN

The role of tumor mutational burden (TMB) in shaping tumor immunity is a key question that has not been addressable using genetically engineered mouse models (GEMMs) of lung cancer. To induce TMB in lung GEMMs, we expressed an ultra-mutator variant of DNA polymerase-E (POLE)P286R in lung epithelial cells. Introduction of PoleP286R allele into KrasG12D and KrasG12D; p53L/L (KP) models significantly increase their TMB. Immunogenicity and sensitivity to immune checkpoint blockade (ICB) induced by Pole is partially dependent on p53. Corroborating these observations, survival of NSCLC patients whose tumors have TP53truncating mutations is shorter than those with TP53WT with immunotherapy. Immune resistance is in part through reduced antigen presentation and in part due to mutational heterogeneity. Total STING protein levels are elevated in Pole mutated KP tumors creating a vulnerability. A stable polyvalent STING agonist or p53 induction increases sensitivity to immunotherapy offering therapeutic options in these polyclonal tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Mutación
15.
Oncol Lett ; 26(3): 391, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37600329

RESUMEN

Grainyhead-like 2 (GRHL2) is a transcription factor that suppresses epithelial-to-mesenchymal transition (EMT). It has been previously shown that GRHL2 can confer both oncogenic and tumor-suppressive roles in human cancers, including breast, pancreatic and colorectal cancers. However, its role in lung cancer remains elusive. In the present study, a meta-analysis of multiple gene expression datasets with clinical data revealed that GRHL2 expression was increased in lung cancer compared with that in the normal tissues. Copy number analysis of GRHL2, performed using datasets of whole exome sequencing involving 151 lung cancer cell lines, revealed frequent amplifications, suggesting that the increased GRHL2 expression may have resulted from gene amplification. A survival meta-analysis of GRHL2 using The Cancer Genome Atlas (TCGA) dataset showed no association of GRHL2 expression with overall survival. GRHL2 expression was found to be associated with EMT status in lung cancer in TCGA dataset and lung cancer cell lines. GRHL2 knockdown induced partial EMT in the hTERT/Cdk4-immortalized normal lung epithelial cell line HBEC4KT without affecting proliferation measured by CCK-8 assays. In addition, GRHL2 silencing caused three lung cancer cell lines, H1975, H2009 and H441, to undergo partial EMT. However, the proliferative effects differed significantly. GRHL2 silencing promoted proliferation but not colony formation in H1975 cells whilst suppressing colony formation without affecting proliferation in H2009 cells, but it did not affect proliferation in H441 cells. These results suggest cell type-dependent effects of GRHL2 knockdown. Downstream, GRHL2 silencing enhanced the phosphorylation of AKT and ERK, assessed by western blotting with phospho-specific antibodies, in HBEC4KT, H1975 and H2009 cell lines but not in the H441 cell line. By contrast, transient GRHL2 overexpression did not affect A549 cell proliferation, which lack detectable endogenous expression of the GRHL2 protein. However, GRHL2 overexpression did suppress E-cadherin expression in A549 cells. These results suggested that GRHL2 does not only function as a tumor suppressor of EMT but can also behave as an oncogene depending on the lung cancer cell-type context.

16.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37606995

RESUMEN

The discovery of frequent 8p11-p12 amplifications in squamous cell lung cancer (SQLC) has fueled hopes that FGFR1, located inside this amplicon, might be a therapeutic target. In a clinical trial, only 11% of patients with 8p11 amplification (detected by FISH) responded to FGFR kinase inhibitor treatment. To understand the mechanism of FGFR1 dependency, we performed deep genomic characterization of 52 SQLCs with 8p11-p12 amplification, including 10 tumors obtained from patients who had been treated with FGFR inhibitors. We discovered somatically altered variants of FGFR1 with deletion of exons 1-8 that resulted from intragenic tail-to-tail rearrangements. These ectodomain-deficient FGFR1 variants (ΔEC-FGFR1) were expressed in the affected tumors and were tumorigenic in both in vitro and in vivo models of lung cancer. Mechanistically, breakage-fusion-bridges were the source of 8p11-p12 amplification, resulting from frequent head-to-head and tail-to-tail rearrangements. Generally, tail-to-tail rearrangements within or in close proximity upstream of FGFR1 were associated with FGFR1 dependency. Thus, the genomic events shaping the architecture of the 8p11-p12 amplicon provide a mechanistic explanation for the emergence of FGFR1-driven SQLC. Specifically, we believe that FGFR1 ectodomain-deficient and FGFR1-centered amplifications caused by tail-to-tail rearrangements are a novel somatic genomic event that might be predictive of therapeutically relevant FGFR1 dependency.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Amplificación de Genes , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Células Epiteliales/metabolismo
17.
bioRxiv ; 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37398419

RESUMEN

The transcription factor achaete-scute complex homolog 1 (ASCL1) is a lineage oncogene that is central for the growth and survival of small cell lung cancers (SCLC) and neuroendocrine non-small cell lung cancers (NSCLC-NE) that express it. Targeting ASCL1, or its downstream pathways, remains a challenge. However, a potential clue to overcoming this challenage has been information that SCLC and NSCLC-NE that express ASCL1 exhibit extremely low ERK1/2 activity, and efforts to increase ERK1/2 activity lead to inhibition of SCLC growth and surival. Of course, this is in dramatic contrast to the majority of NSCLCs where high activity of the ERK pathway plays a major role in cancer pathogenesis. A major knowledge gap is defining the mechanism(s) underlying the low ERK1/2 activity in SCLC, determining if ERK1/2 activity and ASCL1 function are inter-related, and if manipulating ERK1/2 activity provides a new therapeutic strategy for SCLC. We first found that expression of ERK signaling and ASCL1 have an inverse relationship in NE lung cancers: knocking down ASCL1 in SCLCs and NE-NSCLCs increased active ERK1/2, while inhibition of residual SCLC/NSCLC-NE ERK1/2 activity with a MEK inhibitor increased ASCL1 expression. To determine the effects of ERK activity on expression of other genes, we obtained RNA-seq from ASCL1-expressing lung tumor cells treated with an ERK pathway MEK inhibitor and identified down-regulated genes (such as SPRY4, ETV5, DUSP6, SPRED1) that potentially could influence SCLC/NSCLC-NE tumor cell survival. This led us to discover that genes regulated by MEK inhibition suppress ERK activation and CHIP-seq demonstrated these are bound by ASCL1. In addition, SPRY4, DUSP6, SPRED1 are known suppressors of the ERK1/2 pathway, while ETV5 regulates DUSP6. Survival of NE lung tumors was inhibited by activation of ERK1/2 and a subset of ASCL1-high NE lung tumors expressed DUSP6. Because the dual specificity phosphatase 6 (DUSP6) is an ERK1/2-selective phosphatase that inactivates these kinases and has a pharmacologic inhibitor, we focused mechanistic studies on DUSP6. These studies showed: Inhibition of DUSP6 increased active ERK1/2, which accumulated in the nucleus; pharmacologic and genetic inhibition of DUSP6 affected proliferation and survival of ASCL1-high NE lung cancers; and that knockout of DUSP6 "cured" some SCLCs while in others resistance rapidly developed indicating a bypass mechanism was activated. Thus, our findings fill this knowledge gap and indicate that combined expression of ASCL1, DUSP6 and low phospho-ERK1/2 identify some neuroendocrine lung cancers for which DUSP6 may be a therapeutic target.

18.
iScience ; 26(6): 106983, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37378310

RESUMEN

Lineage plasticity, especially transdifferentiation between neural/neuroendocrine (NE) and non-NE lineage, has been observed in multiple cancer types and linked to increased tumor aggressiveness. However, existing NE/non-NE subtype classifications in various cancer types were established through ad hoc approaches in different studies, making it difficult to align findings across cancer types and extend investigations to new datasets. To address this issue, we developed a generalized strategy to generate quantitative NE scores and a web application to facilitate its implementation. We applied this method to nine datasets covering seven cancer types, including two neural cancers, two neuroendocrine cancers, and three non-NE cancers. Our analysis revealed significant NE inter-tumoral heterogeneity and identified strong associations between NE scores and molecular, histological, and clinical features, including prognosis in different cancer types. These results support the translational utility of NE scores. Overall, our work demonstrated a broadly applicable strategy for determining the NE properties of tumors.

19.
Cancer Cell ; 41(7): 1363-1380.e7, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37327788

RESUMEN

Inactivating STK11/LKB1 mutations are genomic drivers of primary resistance to immunotherapy in KRAS-mutated lung adenocarcinoma (LUAD), although the underlying mechanisms remain unelucidated. We find that LKB1 loss results in enhanced lactate production and secretion via the MCT4 transporter. Single-cell RNA profiling of murine models indicates that LKB1-deficient tumors have increased M2 macrophage polarization and hypofunctional T cells, effects that could be recapitulated by the addition of exogenous lactate and abrogated by MCT4 knockdown or therapeutic blockade of the lactate receptor GPR81 expressed on immune cells. Furthermore, MCT4 knockout reverses the resistance to PD-1 blockade induced by LKB1 loss in syngeneic murine models. Finally, tumors from STK11/LKB1 mutant LUAD patients demonstrate a similar phenotype of enhanced M2-macrophages polarization and hypofunctional T cells. These data provide evidence that lactate suppresses antitumor immunity and therapeutic targeting of this pathway is a promising strategy to reversing immunotherapy resistance in STK11/LKB1 mutant LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/metabolismo , Lactatos/metabolismo , Lactatos/farmacología , Lactatos/uso terapéutico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Macrófagos , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
20.
Mol Cancer Res ; 21(8): 795-807, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37255415

RESUMEN

Lineage plasticity has long been documented in both small cell lung cancer (SCLC) and neuroblastoma, two clinically distinct neuroendocrine (NE) cancers. In this study, we quantified the NE features of cancer as NE scores and performed a systematic comparison of SCLC and neuroblastoma. We found neuroblastoma and SCLC cell lines have highly similar molecular profiles and shared therapeutic sensitivity. In addition, NE heterogeneity was observed at both the inter- and intra-cell line levels. Surprisingly, we did not find a significant association between NE scores and overall survival in SCLC or neuroblastoma. We described many shared and unique NE score-associated features between SCLC and neuroblastoma, including dysregulation of Myc oncogenes, alterations in protein expression, metabolism, drug resistance, and selective gene dependencies. IMPLICATIONS: Our work establishes a reference for molecular changes and vulnerabilities associated with NE to non-NE transdifferentiation through mutual validation of SCLC and neuroblastoma samples.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Pulmonares , Neuroblastoma , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Neoplasias Pulmonares/genética , Neuroblastoma/genética , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...