Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Opin Chem Biol ; 81: 102474, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838505

RESUMEN

Analyzing the quantity and distribution of molecules throughout intact biological tissue is crucial for understanding various biological phenomena. Traditional methods involving destructive extraction result in the loss of spatial information. Conversely, tissue-clearing techniques combined with fluorescence imaging have recently emerged as a powerful tool for deep tissue imaging without sacrificing spatial coverage. Key to this approach is the anchoring and labeling of targets in intact tissue. In this review, methods for anchoring and labeling proteins, lipids, carbohydrates, and small molecules are presented. Future directions include the development of activity-based probes that work in vivo and mark transient events with spatial information to enable a deeper understanding of biological phenomena.


Asunto(s)
Colorantes Fluorescentes , Imagenología Tridimensional , Animales , Colorantes Fluorescentes/química , Imagenología Tridimensional/métodos , Humanos , Coloración y Etiquetado/métodos , Imagen Óptica/métodos , Proteínas/metabolismo , Proteínas/química
2.
J Am Chem Soc ; 146(11): 7515-7523, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38445591

RESUMEN

Characterizing the protein constituents of a specific organelle and protein neighbors of a protein of interest (POI) is essential for understanding the function and state of the organelle and protein networks associated with the POI. Proximity labeling (PL) has emerged as a promising technology for specific and efficient spatial proteomics. Nevertheless, most enzymes adopted for PL still have limitations: APEX requires cytotoxic H2O2 for activation and thus is poor in biocompatibility for in vivo application, BioID shows insufficient labeling kinetics, and TurboID suffers from high background biotinylation. Here, we introduce a bacterial tyrosinase (BmTyr) as a new PL enzyme suitable for H2O2-free, fast (≤10 min in living cells), and low-background protein tagging. BmTyr is genetically encodable and enables subcellular-resolved PL and proteomics in living cells. We further designed a strategy of ligand-tethered BmTyr for in vivo PL, which unveiled the surrounding proteome of a neurotransmitter receptor (Grm1 and Drd2) in its resident synapse in a live mouse brain. Overall, BmTyr is one promising enzyme that can improve and expand PL-based applications and discoveries.


Asunto(s)
Peróxido de Hidrógeno , Monofenol Monooxigenasa , Animales , Ratones , Monofenol Monooxigenasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Orgánulos/metabolismo , Proteoma/metabolismo , Biotinilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...