Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cells Dev ; 31(17-18): 521-528, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35726436

RESUMEN

Lineage-specific differentiation of human-induced pluripotent stem cells (hiPSCs) into cardiomyocytes (CMs) offers a patient-specific model to dissect development and disease pathogenesis in a dish. However, challenges exist with this model system, such as the relative immaturity of iPSC-derived CMs, which evoke the question of whether this model faithfully recapitulates in vivo cardiac development. As in vivo cardiac developmental stage is intimately linked with the proliferative capacity (or maturation is inversely correlated to proliferative capacity), we sought to understand how proliferation is regulated during hiPSC CM differentiation and how it compares with in vivo mouse cardiac development. Using standard Chemically Defined Media 3 differentiation, gene expression profiles demonstrate that hiPSC-derived cardiomyocytes (hiPSC-CMs) do not progress past the equivalent of embryonic day 14.5 of murine cardiac development. Throughout differentiation, overall DNA synthesis rapidly declines with <5% of hiPSC-CMs actively synthesizing DNA at the end of the differentiation period despite their immaturity. Bivariate cell cycle analysis demonstrated that hiPSC-CMs have a cell cycle profile distinct from their non-cardiac counterparts from the same differentiation, with significantly fewer cells within G1 and a marked accumulation of cells in G2/M than their non-cardiac counterparts throughout differentiation. Pulse-chase analysis demonstrated that non-cardiac cells progressed completely through the cell cycle within a 24-h period, whereas hiPSC-CMs had restricted progression with only a small proportion of cells undergoing cytokinesis with the remainder stalling in late S-phase or G2/M. This cell cycle arrest phenotype is associated with abbreviated expression of cell cycle promoting genes compared with expression throughout murine embryonic cardiac development. In summary, directed differentiation of hiPSCs into CMs uncouples the developmental stage from cell cycle regulation compared with in vivo mouse cardiac development, leading to a premature exit of hiPSC-CMs from the cell cycle despite their relative immaturity.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Humanos , Ratones , Miocitos Cardíacos
2.
Methods Mol Biol ; 2429: 85-102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507157

RESUMEN

Mitochondrial function and energy metabolism are increasingly recognized not only as regulators of pluripotent stem cell function and fate, but also as critical targets in disease pathogenesis and aging. Therefore across the downstream applications of pluripotent stem cells, including development and disease modeling, drug screening, and cell-based therapies, it is crucial to be able to measure mitochondrial function and metabolism in a high-throughput, real-time and label-free manner. Here we describe the application of Seahorse extracellular flux analysis to measure mitochondrial function in pluripotent stem cells and their derivatives. Specifically, we highlight two assays, the Mitochondrial Stress Test, which quantifies overall mitochondrial function including basal, maximal and ATP-couple oxygen consumption rates, and the Electron Transport Chain Complex Specific assay, that quantifies function of individual complexes within the electron transport chain.


Asunto(s)
Células Madre Pluripotentes , Metabolismo Energético , Mitocondrias/metabolismo , Consumo de Oxígeno , Células Madre Pluripotentes/metabolismo
4.
Front Cell Dev Biol ; 8: 87, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32181250

RESUMEN

Pluripotent stem cells (PSCs) are characterized by their unique capacity for both unlimited self-renewal and their potential to differentiate to all cell lineages contained within the three primary germ layers. While once considered a distinct cellular state, it is becoming clear that pluripotency is in fact a continuum of cellular states, all capable of self-renewal and differentiation, yet with distinct metabolic, mitochondrial and epigenetic features dependent on gestational stage. In this review we focus on two of the most clearly defined states: "naïve" and "primed" PSCs. Like other rapidly dividing cells, PSCs have a high demand for anabolic precursors necessary to replicate their genome, cytoplasm and organelles, while concurrently consuming energy in the form of ATP. This requirement for both anabolic and catabolic processes sufficient to supply a highly adapted cell cycle in the context of reduced oxygen availability, distinguishes PSCs from their differentiated progeny. During early embryogenesis PSCs adapt their substrate preference to match the bioenergetic requirements of each specific developmental stage. This is reflected in different mitochondrial morphologies, membrane potentials, electron transport chain (ETC) compositions, and utilization of glycolysis. Additionally, metabolites produced in PSCs can directly influence epigenetic and transcriptional programs, which in turn can affect self-renewal characteristics. Thus, our understanding of the role of metabolism in PSC fate has expanded from anabolism and catabolism to include governance of the pluripotent epigenetic landscape. Understanding the roles of metabolism and the factors influencing metabolic pathways in naïve and primed pluripotent states provide a platform for understanding the drivers of cell fate during development. This review highlights the roles of the major metabolic pathways in the acquisition and maintenance of the different states of pluripotency.

5.
Breast Cancer Res ; 19(1): 130, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29212525

RESUMEN

BACKGROUND: Patient-derived xenografts (PDXs) are increasingly used in cancer research as a tool to inform cancer biology and drug response. Most available breast cancer PDXs have been generated in the metastatic setting. However, in the setting of operable breast cancer, PDX models both sensitive and resistant to chemotherapy are needed for drug development and prospective data are lacking regarding the clinical and molecular characteristics associated with PDX take rate in this setting. METHODS: The Breast Cancer Genome Guided Therapy Study (BEAUTY) is a prospective neoadjuvant chemotherapy (NAC) trial of stage I-III breast cancer patients treated with neoadjuvant weekly taxane+/-trastuzumab followed by anthracycline-based chemotherapy. Using percutaneous tumor biopsies (PTB), we established and characterized PDXs from both primary (untreated) and residual (treated) tumors. Tumor take rate was defined as percent of patients with the development of at least one stably transplantable (passed at least for four generations) xenograft that was pathologically confirmed as breast cancer. RESULTS: Baseline PTB samples from 113 women were implanted with an overall take rate of 27.4% (31/113). By clinical subtype, the take rate was 51.3% (20/39) in triple negative (TN) breast cancer, 26.5% (9/34) in HER2+, 5.0% (2/40) in luminal B and 0% (0/3) in luminal A. The take rate for those with pCR did not differ from those with residual disease in TN (p = 0.999) and HER2+ (p = 0.2401) tumors. The xenografts from 28 of these 31 patients were such that at least one of the xenografts generated had the same molecular subtype as the patient. Among the 35 patients with residual tumor after NAC adequate for implantation, the take rate was 17.1%. PDX response to paclitaxel mirrored the patients' clinical response in all eight PDX tested. CONCLUSIONS: The generation of PDX models both sensitive and resistant to standard NAC is feasible and these models exhibit similar biological and drug response characteristics as the patients' primary tumors. Taken together, these models may be useful for biomarker discovery and future drug development.


Asunto(s)
Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Xenoinjertos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Biopsia , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Femenino , Perfilación de la Expresión Génica , Humanos , Imagen por Resonancia Magnética , Ratones , Terapia Neoadyuvante , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cell Rep ; 10(8): 1324-34, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25732823

RESUMEN

DBC1 (deleted in breast cancer 1), also known as CCAR2 or KIAA1967, is an important negative regulator of SIRT1 and cellular stress response. Although the Dbc1 gene localizes at a region that is homozygously deleted in breast cancer, its role in tumorigenesis remains unclear. It has been suggested to be either a tumor suppressor or an oncogene. Therefore, the function of DBC1 in cancer needs to be further explored. Here, we report that Dbc1 knockout mice are tumor prone, suggesting that DBC1 functions as a tumor suppressor in vivo. Our data suggest that the increased tumor incidence in Dbc1 knockout mice is independent of Sirt1. Instead, we found that DBC1 loss results in less p53 protein in vitro and in vivo. DBC1 directly binds p53 and stabilizes it through competition with MDM2. These studies reveal that DBC1 plays an important role in tumor suppression through p53 regulation.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinogénesis , Proteínas de Ciclo Celular , Línea Celular , Proliferación Celular , Supervivencia sin Enfermedad , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/genética , Ubiquitinación
7.
J Cell Biol ; 185(2): 203-11, 2009 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-19364925

RESUMEN

The protein deacetylase SIRT1 has been implicated in a variety of cellular functions, including development, cellular stress responses, and metabolism. Increasing evidence suggests that similar to its counterpart, Sir2, in yeast, Caenorhabditis elegans, and Drosophila melanogaster, SIRT1 may function to regulate life span in mammals. However, SIRT1's role in cancer is unclear. During our investigation of SIRT1, we found that c-Myc binds to the SIRT1 promoter and induces SIRT1 expression. However, SIRT1 interacts with and deacetylates c-Myc, resulting in decreased c-Myc stability. As a consequence, c-Myc's transformational capability is compromised in the presence of SIRT1. Overall, our experiments identify a c-Myc-SIRT1 feedback loop in the regulation of c-Myc activity and cellular transformation, supporting/suggesting a role of SIRT1 in tumor suppression.


Asunto(s)
Transformación Celular Neoplásica , Retroalimentación , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sirtuinas/metabolismo , Acetilación , Animales , Humanos , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas c-myc/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Sirtuina 1 , Sirtuinas/genética , Telomerasa/genética , Telomerasa/metabolismo , Transfección
8.
J Biol Chem ; 283(46): 31785-90, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18801727

RESUMEN

Aurora A is a serine/threonine kinase that functions in various stages of mitosis. Accumulating evidence has demonstrated that gene amplification and overexpression of Aurora A are linked to tumorigenesis, suggesting that Aurora A is an oncogene. In addition, Aurora A overexpression has been used as a negative prognostic marker, because it is associated with resistance to anti-mitotic agents commonly used for cancer therapy. To understand the physiological functions of Aurora A, we generated Aurora A knock-out mice. Aurora A null mice die early during embryonic development before the 16-cell stage. These Aurora A null embryos have defects in mitosis, particularly in spindle assembly, supporting critical functions of Aurora A during mitotic transitions. Interestingly, Aurora A heterozygosity results in a significantly increased tumor incidence in mice, suggesting that Aurora A may also act as a haploinsufficient tumor suppressor. Consistently, Aurora A heterozygous mouse embryonic fibroblasts have higher rates of aneuploidy. We further discovered that VX-680, an Aurora kinase inhibitor currently in phase II clinical trials for cancer treatment, could induce aneuploidy in wild type mouse embryonic fibroblasts. We conclude that a balanced Aurora A level is critical for maintaining genomic stability and one needs to be fully aware of the potential side effects of anti-cancer therapy based on the use of Aurora A-specific inhibitors.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Aneuploidia , Animales , Aurora Quinasa A , Aurora Quinasas , Línea Celular , Transformación Celular Neoplásica/genética , Embrión de Mamíferos/embriología , Embrión de Mamíferos/enzimología , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Noqueados , Mitosis , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Factores de Tiempo
9.
Mol Cell Biol ; 28(22): 6870-6, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18794363

RESUMEN

Polo-like kinases (Plks) are serine/threonine kinases that are highly conserved in organisms from yeasts to humans. Previous reports have shown that Plk1 is critical for all stages of mitosis and may play a role in DNA replication during S phase. While much work has focused on Plk1, little is known about the physiological function of Plk1 in vivo. To address this question, we generated Plk1 knockout mice. Plk1 homozygous null mice were embryonic lethal, and early Plk1(-/-) embryos failed to survive after the eight-cell stage. Immunocytochemistry studies revealed that Plk1-null embryos were arrested outside the mitotic phase, suggesting that Plk1 is important for proper cell cycle progression. It has been postulated that Plk1 is a potential oncogene, due to its overexpression in a variety of tumors and tumor cell lines. While the Plk1 heterozygotes were healthy at birth, the incidence of tumors in these animals was threefold greater than that in their wild-type counterparts, demonstrating that the loss of one Plk1 allele accelerates tumor formation. Collectively, our data support that Plk1 is important for early embryonic development and may function as a haploinsufficient tumor suppressor.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Embrión de Mamíferos/fisiología , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Embrión de Mamíferos/citología , Genotipo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/genética , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética , Quinasa Tipo Polo 1
10.
J Cell Biol ; 181(5): 727-35, 2008 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-18504301

RESUMEN

The importance of the DNA damage response (DDR) pathway in development, genomic stability, and tumor suppression is well recognized. Although 53BP1 and MDC1 have been recently identified as critical upstream mediators in the cellular response to DNA double-strand breaks, their relative hierarchy in the ataxia telangiectasia mutated (ATM) signaling cascade remains controversial. To investigate the divergent and potentially overlapping functions of MDC1 and 53BP1 in the ATM response pathway, we generated mice deficient for both genes. Unexpectedly, the loss of both MDC1 and 53BP1 neither significantly increases the severity of defects in DDR nor increases tumor incidence compared with the loss of MDC1 alone. We additionally show that MDC1 regulates 53BP1 foci formation and phosphorylation in response to DNA damage. These results suggest that MDC1 functions as an upstream regulator of 53BP1 in the DDR pathway and in tumor suppression.


Asunto(s)
Daño del ADN , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN/metabolismo , Femenino , Fibroblastos/metabolismo , Masculino , Metafase , Ratones , Ratones Noqueados , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
11.
DNA Repair (Amst) ; 6(9): 1243-54, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17376750

RESUMEN

In male germ cells the repair of DNA double strand breaks (DSBs) differs from that described for somatic cell lines. Irradiation induced immunofluorescent foci (IRIF's) signifying a double strand DNA breaks, were followed in spermatogenic cells up to 16 h after the insult. Foci were characterised for Mdc1, 53BP1 and Rad51 that always were expressed in conjecture with gamma-H2AX. Subsequent spermatogenic cell types were found to have different repair proteins. In early germ cells up to the start of meiotic prophase, i.e. in spermatogonia and preleptotene spermatocytes, 53BP1 and Rad51 are available but no Mdc1 is expressed in these cells before and after irradiation. The latter might explain the radiosensitivity of spermatogonia. Spermatocytes from shortly after premeiotic S-phase till pachytene in epithelial stage IV/V express Mdc1 and Rad51 but no 53BP1 which has no role in recombination involved repair during the early meiotic prophase. Mdc1 is required during this period as in Mdc1 deficient mice all spermatocytes enter apoptosis in epithelial stage IV when they should start mid-pachytene phase of the meiotic prophase. From stage IV mid pachytene spermatocytes to round spermatids, Mdc1 and 53BP1 are expressed while Rad51 is no longer expressed in the haploid round spermatids. Quantifying foci numbers of gamma-H2AX, Mdc1 and 53BP1 at various time points after irradiation revealed a 70% reduction after 16 h in pachytene and diplotene spermatocytes and round spermatids. Although the DSB repair efficiency is higher then in spermatogonia where only a 40% reduction was found, it still does not compare to somatic cell lines where a 70% reduction occurs in 2 h. Taken together, DNA DSBs repair proteins differ for the various types of spermatogenic cells, no germ cell type possessing the complete set. This likely leads to a compromised efficiency relative to somatic cell lines. From the evolutionary point of view it may be an advantage when germ cells die from DNA damage rather than risk the acquisition of transmittable errors made during the repair process.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Fosfoproteínas/metabolismo , Espermatocitos/efectos de la radiación , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Relación Dosis-Respuesta en la Radiación , Técnica del Anticuerpo Fluorescente , Células Germinativas/metabolismo , Células Germinativas/efectos de la radiación , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Meiosis/fisiología , Ratones , Ratones Endogámicos , Ratones Noqueados , Recombinasa Rad51/metabolismo , Espermatogonias/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Rayos X
12.
Mol Carcinog ; 45(6): 403-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16691596

RESUMEN

Cells activate complex signaling networks in response to DNA damage. Several proteins and protein complexes are involved in sensing DNA lesions and initiating the DNA damage response networks. The subsequent DNA damage responses, including the initiation of DNA repair pathways, the activation of cell cycle checkpoint controls and the induction of apoptosis, help maintain genomic stability in mammalian systems. Failure to establish the appropriate DNA damage signaling networks results in genomic instability, which is a known causal factor in tumorigenesis. This review will discuss recent progress in the understanding of the mechanisms by which mammalian cells sense DNA lesions and transduce DNA damage signals during early DNA damage responses.


Asunto(s)
Daño del ADN , Proteínas Nucleares/fisiología , Transducción de Señal/fisiología , Transactivadores/fisiología , Proteínas Adaptadoras Transductoras de Señales , Apoptosis , Proteínas de Ciclo Celular , Proteínas de Unión al ADN/fisiología , Humanos
13.
Mol Cell ; 21(2): 187-200, 2006 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-16427009

RESUMEN

MDC1 functions in checkpoint activation and DNA repair following DNA damage. To address the physiological role of MDC1, we disrupted the MDC1 gene in mice. MDC1-/- mice recapitulated many phenotypes of H2AX-/- mice, including growth retardation, male infertility, immune defects, chromosome instability, DNA repair defects, and radiation sensitivity. At the molecular level, H2AX, MDC1, and ATM form a positive feedback loop, with MDC1 directly mediating the interaction between H2AX and ATM. MDC1 binds phosphorylated H2AX through its BRCT domain and ATM through its FHA domain. Through these interactions, MDC1 accumulates activated ATM flanking the sites of DNA damage, facilitating further ATM-dependent phosphorylation of H2AX and the amplification of DNA damage signals. In the absence of MDC1, many downstream ATM signaling events are defective. These results suggest that MDC1, as a signal amplifier of the ATM pathway, is vital in controlling proper DNA damage response and maintaining genomic stability.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Reparación del ADN , Femenino , Inestabilidad Genómica , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Transducción de Señal , Transactivadores
14.
Nat Struct Mol Biol ; 12(7): 589-93, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15965487

RESUMEN

The tumor suppressor BRCA1 has an important function in the maintenance of genomic stability. Increasing evidence suggests that BRCA1 regulates cell cycle checkpoints and DNA repair after DNA damage. However, little is known about its normal function in the absence of DNA damage. Here we show that BRCA1 interacts and colocalizes with topoisomerase IIalpha in S phase cells. Similar to cells treated with the topoisomerase IIalpha inhibitor ICRF-193, BRCA1-deficient cells show lagging chromosomes, indicating a defect in DNA decatenation and chromosome segregation. More directly, BRCA1 deficiency results in defective DNA decatenation in vitro. Finally, topoisomerase IIalpha is ubiquitinated in a BRCA1-dependent manner, and topoisomerase IIalpha ubiquitination correlates with higher DNA decatenation activity. Together these results suggest an important role of BRCA1 in DNA decatenation and reveal a previously unknown function of BRCA1 in the maintenance of genomic stability.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Proteína BRCA1/metabolismo , Segregación Cromosómica/fisiología , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Inestabilidad Genómica/fisiología , Fase S/fisiología , Células Cultivadas , Análisis Citogenético , Técnica del Anticuerpo Fluorescente , Immunoblotting , Inmunoprecipitación , ARN Interferente Pequeño/metabolismo , Transfección , Ubiquitina/metabolismo
15.
Nat Genet ; 37(4): 401-6, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15793587

RESUMEN

Tumorigenesis is a consequence of loss of tumor suppressors and activation of oncogenes. Expression of the mitotic checkpoint protein Chfr is lost in 20-50% of primary tumors and tumor cell lines. To explore whether downregulation of Chfr contributes directly to tumorigenesis, we generated Chfr knockout mice. Chfr-deficient mice are cancer-prone, develop spontaneous tumors and have increased skin tumor incidence after treatment with dimethylbenz(a)anthracene. Chfr deficiency leads to chromosomal instability in embryonic fibroblasts and regulates the mitotic kinase Aurora A, which is frequently upregulated in a variety of tumors. Chfr physically interacts with Aurora A and ubiquitinates Aurora A both in vitro and in vivo. Collectively, our data suggest that Chfr is a tumor suppressor and ensures chromosomal stability by controlling the expression levels of key mitotic proteins such as Aurora A.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor/fisiología , Proteínas de Neoplasias/fisiología , Proteínas Quinasas/metabolismo , Neoplasias Cutáneas/genética , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Animales , Aurora Quinasa A , Aurora Quinasas , Carcinógenos/toxicidad , Proteínas de Ciclo Celular/genética , Inestabilidad Cromosómica , Embrión de Mamíferos/citología , Embrión de Mamíferos/enzimología , Femenino , Fibroblastos/enzimología , Marcación de Gen , Heterocigoto , Homocigoto , Masculino , Ratones , Ratones Noqueados , Mitosis/genética , Proteínas de Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/patología , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas , Proteínas de Xenopus
16.
J Biol Chem ; 279(45): 46359-62, 2004 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-15377652

RESUMEN

DNA damage initiates signaling events through kinase cascades that result in cell cycle checkpoint control and DNA repair. However, it is not yet clear how the signaling pathways relay to DNA damage repair. Using the repeat region of checkpoint protein MDC1 (mediator of DNA damage checkpoint protein 1), we identified DNA-PKcs/Ku as MDC1-associated proteins. Here, we show that MDC1 directly interacts with the Ku/DNA-PKcs complex. Down-regulation of MDC1 resulted in defective phospho-DNA-PKcs foci formation and DNA-PKcs autophosphorylation, suggesting that MDC1 regulates autophosphorylation of DNA-PKcs following DNA damage. Furthermore, DNA-PK-dependent DNA damage repair is defective in cells depleted of MDC1. Taken together, these results suggest that the MDC1 repeat region is involved in protein-protein interaction with DNA-PKcs/Ku, and MDC1 regulates DNA damage repair by influencing DNA-PK autophosphorylation. Therefore, MDC1 acts not only as a mediator of DNA damage checkpoint but also as a mediator of DNA damage repair.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas Nucleares/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/fisiología , Proteínas Adaptadoras Transductoras de Señales , Ciclo Celular , Proteínas de Ciclo Celular , Línea Celular , ADN/metabolismo , Reparación del ADN , Proteína Quinasa Activada por ADN , Regulación hacia Abajo , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Transfección
17.
J Biol Chem ; 278(16): 13599-602, 2003 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-12611903

RESUMEN

BRCA1 is a tumor suppressor involved in DNA repair and damage-induced checkpoint controls. In response to DNA damage, BRCA1 relocalizes to nuclear foci at the sites of DNA lesions. However, little is known about the regulation of BRCA1 relocalization following DNA damage. Here we show that mediator of DNA damage checkpoint protein 1 (MDC1), previously named NFBD1 or Kiaa0170, is a proximate mediator of DNA damage responses that regulates BRCA1 function. MDC1 regulates ataxia-telangiectasia-mutated (ATM)-dependent phosphorylation events at the site of DNA damage. Importantly down-regulation of MDC1 abolishes the relocalization and hyperphosphorylation of BRCA1 following DNA damage, which coincides with defective G(2)/M checkpoint control in response to DNA damage. Taken together these data suggest that MDC1 regulates BRCA1 function in DNA damage checkpoint control.


Asunto(s)
Proteína BRCA1/biosíntesis , Proteína BRCA1/metabolismo , Daño del ADN , Proteínas de Unión al ADN/fisiología , Proteínas Nucleares/fisiología , Transactivadores/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Proteínas de Ciclo Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN Complementario/metabolismo , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Regulación hacia Abajo , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Células K562 , Microscopía Fluorescente , Proteínas Nucleares/metabolismo , Fosforilación , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Fase S , Factores de Tiempo , Transactivadores/metabolismo , Transfección , Proteínas Supresoras de Tumor
18.
Nature ; 421(6926): 957-61, 2003 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-12607004

RESUMEN

Forkhead-homology-associated (FHA) domains function as protein-protein modules that recognize phosphorylated serine/threonine motifs. Interactions between FHA domains and phosphorylated proteins are thought to have essential roles in the transduction of DNA damage signals; however, it is unclear how FHA-domain-containing proteins participate in mammalian DNA damage responses. Here we report that a FHA-domain-containing protein-mediator of DNA damage checkpoint protein 1 (MDC1; previously known as KIAA0170)--is involved in DNA damage responses. MDC1 localizes to sites of DNA breaks and associates with CHK2 after DNA damage. This association is mediated by the MDC1 FHA domain and the phosphorylated Thr 68 of CHK2. Furthermore, MDC1 is phosphorylated in an ATM/CHK2-dependent manner after DNA damage, suggesting that MDC1 may function in the ATM-CHK2 pathway. Consistent with this hypothesis, suppression of MDC1 expression results in defective S-phase checkpoint and reduced apoptosis in response to DNA damage, which can be restored by the expression of wild-type MDC1 but not MDC1 with a deleted FHA domain. Suppression of MDC1 expression results in decreased p53 stabilization in response to DNA damage. These results suggest that MDC1 is recruited through its FHA domain to the activated CHK2, and has a critical role in CHK2-mediated DNA damage responses.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Quinasa de Punto de Control 2 , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Activación Enzimática/efectos de la radiación , Rayos gamma , Humanos , Ratones , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación/efectos de la radiación , Unión Proteica/efectos de la radiación , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de la radiación , Transducción de Señal/efectos de la radiación , Transactivadores/química , Transactivadores/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...