RESUMEN
Enterococci are opportunistic pathogens that can cause severe bacterial infections. Treatment of these infections is challenging because enterococci possess intrinsic and acquired mechanisms of resistance to commonly used antibiotics, including cephalosporins. The transmembrane serine/threonine PASTA kinase, IreK, is an important determinant of enterococcal cephalosporin resistance. Upon exposure to cephalosporins, IreK becomes autophosphorylated, which stimulates its kinase activity to phosphorylate downstream substrates and drive cephalosporin resistance. However, the molecular mechanisms that modulate IreK autophosphorylation in response to cell wall stress, such as that induced by cephalosporins, remain unknown. A cytoplasmic protein, GpsB, promotes signaling by PASTA kinase homologs in other bacterial species, but the function of enterococcal GpsB has not been previously investigated. We used in vitro and in vivo approaches to test the hypothesis that enterococcal GpsB promotes IreK signaling in response to cephalosporins to drive cephalosporin resistance. We found that GpsB promotes IreK activity both in vivo and in vitro. This effect is required for cephalosporins to trigger IreK autophosphorylation and activation of an IreK-dependent signaling pathway, and thereby is also required for enterococcal intrinsic cephalosporin resistance. Moreover, analyses of GpsB mutants and a ΔireK gpsB double mutant suggest that GpsB has an additional function, beyond regulation of IreK activity, which is required for optimal growth and full cephalosporin resistance. Collectively, our data provide new insights into the mechanism of signal transduction by the PASTA kinase IreK and the mechanism of enterococcal intrinsic cephalosporin resistance. IMPORTANCE Enterococci are opportunistic pathogens that can cause severe bacterial infections. Treatment of these infections is challenging because enterococci possess intrinsic and acquired resistance to commonly used antibiotics. In particular, enterococci are intrinsically resistant to cephalosporin antibiotics, a trait that requires the activity of a transmembrane serine/threonine kinase, IreK, which belongs to the bacterial PASTA kinase family. The mechanisms by which PASTA kinases are regulated in cells are poorly understood. Here, we report that the cytoplasmic protein GpsB directly promotes IreK signaling in enterococci to drive cephalosporin resistance. Thus, we provide new insights into PASTA kinase regulation and control of enterococcal cephalosporin resistance, and suggest that GpsB could be a promising target for new therapeutics to disable cephalosporin resistance.
Asunto(s)
Resistencia a las Cefalosporinas , Enterococcus faecalis , Enterococcus faecalis/metabolismo , Cefalosporinas/farmacología , Cefalosporinas/metabolismo , Fosfotransferasas/metabolismo , Transducción de Señal , Proteínas Serina-Treonina Quinasas/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Treonina/metabolismo , Treonina/farmacología , Serina/metabolismoRESUMEN
Enterococcus faecalis is a Gram-positive bacterium that is a major cause of hospital-acquired infections due, in part, to its intrinsic resistance to cell wall-active antimicrobials. One critical determinant of this resistance is the transmembrane kinase IreK, which belongs to the penicillin-binding protein and serine/threonine kinase-associated kinase family of bacterial signaling proteins involved with the regulation of cell wall homeostasis. The activity of IreK is enhanced in response to cell wall stress, but direct substrates of IreK phosphorylation, leading to antimicrobial resistance, are largely unknown. To better understand stress-modulated phosphorylation events contributing to antimicrobial resistance, wild type E. faecalis cells treated with cell wall-active antimicrobials, chlorhexidine or ceftriaxone, were examined via phosphoproteomics. Among the most prominent changes was increased phosphorylation of divisome components after both treatments, suggesting that E. faecalis modulates cell division in response to cell wall stress. Phosphorylation mediated by IreK was then determined via a similar analysis with a E. faecalis ΔireK mutant strain, revealing potential IreK substrates involved with the regulation of peptidoglycan biosynthesis and within the E. faecalis CroS/R two-component system, another signal transduction pathway that promotes antimicrobial resistance. These results reveal critical insights into the biological functions of IreK.
Asunto(s)
Pared Celular , Enterococcus faecalis , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Pruebas de Sensibilidad Microbiana , Fosforilación , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
Enterococci are Gram-positive, opportunistic pathogens that reside throughout the gastrointestinal tracts of most terrestrial organisms. Enterococci are resistant to many antibiotics, which makes enterococcal infections difficult to treat. Enterococci are also particularly hardy bacteria that can tolerate a variety of environmental stressors. Understanding how enterococci sense and respond to the extracellular environment to enact adaptive biological responses may identify new targets that can be exploited for development of treatments for enterococcal infections. Bacterial eukaryotic-like serine/threonine kinases (eSTKs) and cognate phosphatases (STPs) are important signaling systems that mediate biological responses to extracellular stimuli. Some bacterial eSTKs are transmembrane proteins that contain a series of extracellular repeats of the penicillin-binding and Ser/Thr kinase-associated (PASTA) domain, leading to their designation as "PASTA kinases." Enterococcal genomes encode a single PASTA kinase and its cognate phosphatase. Investigations of the enterococcal PASTA kinase revealed its importance in resistance to antibiotics and other cell wall stresses, in enterococcal colonization of the mammalian gut, clues about its mechanism of signal transduction, and its integration with other enterococcal signal transduction systems. In this review, we describe the current state of knowledge of PASTA kinase signaling in enterococci and describe important gaps that still need to be addressed to provide a better understanding of this important signaling system.